
- •Схемотехника цифровых устройств Учебное пособие Новосибирск
- •Кафедра сапр
- •Введение
- •1 Параметры цифровых микросхем
- •1.1 Уровни логического нуля и единицы
- •1.2 Входные и выходные токи цифровых микросхем
- •1.3 Параметры, определяющие быстродействие цифровых микросхем
- •1.4 Описание логической функции цифровых схем
- •2 Основные логические функции и элементы
- •2.1 Функция "не", инвертор
- •2.2 Функция "и", логическое умножение
- •2.3 Функция "или", логическое сложение
- •3 Основные схемотехнические решения цифровых микросхем
- •Диодно-транзисторная логика (дтл);
- •3.1 Диодно-транзисторная логика (дтл)
- •3.2 Транзисторно-транзисторная логика (ттл)
- •3.3 Логика на комплементарных моп транзисторах (кмдп)
- •4 Согласование цифровых микросхем между собой
- •4.1 Согласование микросхем из различных серий между собой
- •Согласование 3- и 5- вольтовых ттл микросхем.
- •Согласование 3- вольтовых ттл микросхем и 2,5- вольтовых кмоп микросхем.
- •4.2 Регенерация цифрового сигнала
- •5 Арифметические основы цифровой техники
- •5.1 Системы счисления
- •5.2 Преобразование чисел из одной системы счисления в другую
- •6 Комбинационные цифровые схемы
- •6.1 Законы алгебры логики
- •Закон одинарных элементов.
- •Законы отрицания.
- •Комбинационные законы.
- •Закон тавтологии (многократное повторение):
- •Правило поглощения.
- •Правило склеивания.
- •6.2 Построение цифровой схемы по произвольной таблице истинности
- •6.3 Декодеры
- •6.4 Шифраторы
- •Универсального кодера.
- •6.5 Мультиплексоры
- •6.6 Демультиплексоры
- •7 Генераторы
- •7.1 Усилительные параметры кмоп инвертора
- •7.2 Осцилляторные схемы
- •7.3 Мультивибраторы
- •7.4 Особенности кварцевой стабилизации частоты генераторов
- •7.5 Одновибраторы
- •8 Цифровые схемы последовательностного типа
- •8.1 Триггеры
- •8.2 Регистры
- •8.3 Счётчики
- •9 Индикаторы
- •9.1 Малогабаритные лампочки накаливания
- •9.2 Газоразрядные лампы
- •9.3 Светодиодные индикаторы
- •9.4. Динамическая индикация
- •9.5 Жидкокристаллические индикаторы
- •10 Разработка цифрового устройства на примере электронных часов
- •10.1 Разработка структурной схемы часов
- •10.2 Разработка принципиальной схемы часов
- •11 Синхронные последовательные порты
- •11.1 Ssi интерфейс (dsp порт)
- •11.2 Spi порт
- •11.3 I2с порт
- •12 Синтезаторы частоты
- •12.1 Схемы фазовой подстройки частоты
- •12.2 Схемы определения ошибки по частоте
- •12.3 Умножители частоты
- •12.4 Частотные детекторы, построенные на основе фапч
- •13 Цифровая обработка сигналов
- •13.1 Структурная схема цифрового устройства обработки сигнала
- •13.2 Особенности аналого-цифрового и цифро-аналогового преобразования
- •Критерии дискретизации по котельникову
- •Погрешность хранения
- •Погрешность выборки
- •Погрешность временного положение стробирующего импульса
- •13.3 Фильтры для устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •13.4 Дискретизация сигнала на промежуточной частоте (субдискретизация)
- •13.5 Статическая передаточная функция ацп и цап и погрешности по постоянному току
- •13.6 Погрешности преобразования переменного тока
- •Искажения и шум в идеальном n-разрядном ацп
- •14 Виды аналого-цифровых преобразователей
- •14.1 Параллельные ацп
- •14.2 Последовательно-параллельные ацп
- •14.3 Ацп последовательного приближения
- •15 Основные блоки микросхем цифровой обработки сигналов
- •15.1 Двоичные сумматоры
- •15.2 Цифровые умножители
- •15.3 Постоянные запоминающие устройства
- •15.4 Статические оперативные запоминающие устройства (озу)
- •15.5 Цифровые фильтры
- •16 Реализация передатчиков радиосигналов в цифровом виде
- •16.1 Генераторы с цифровым управлением (nco)
- •16.2 Микросхемы прямого цифрового синтеза (dds)
- •16.3 Квадратурные модуляторы (Up converter)
- •16.4 Интерполирующие цифровые фильтры
- •17 Реализация радиоприёмников в цифровом виде
- •17.1 Цифровые преобразователи частоты
- •17.2 Цифровой квадратурный демодулятор
- •17.3 Децимирующие фильтры
- •Список литературы
- •Часть 1. Учебное пособие. Новосибирск , 2006.
- •630102, Новосибирск, ул. Кирова, 86.
4 Согласование цифровых микросхем между собой
При проектировании цифровых схем, как правило, используют микросхемы одной серии. Однако это не всегда удаётся. Применять микросхемы других серий приходится:
когда требуются микросхемы, отсутствующие в данной серии микросхем;
когда отдельные узлы схемы должны работать на повышенной частоте;
при работе на внешние устройства могут потребоваться микросхемы с повышенной нагрузочной способностью.
Первый пункт не требует комментариев. Обычно малым набором микросхем характеризуются серии с повышенным быстродействием или с повышенной нагрузочной способностью. Серии микросхем с малым набором микросхем также обычно характеризуются высокой стоимостью. Так что первый пункт жёстко связан с оставшимися двумя пунктами.
Что касается второго пункта, то выбор микросхем из различных серий может быть обусловлен двумя причинами.
Первая причина – это стоимость цифрового устройства в целом. Микросхемы с повышенным быстродействием стоят дороже микросхем со средним быстродействием. Микросхемы в одном и том же цифровом устройстве обычно работают на разных частотах. При этом на повышенной частоте работает не более одного процента от общего количества микросхем. В результате применение микросхем с различным быстродействием может существенно снизить стоимость всего цифрового устройства.
Вторая причина – это ток потребления микросхем. В ТТЛ, p-МОП и n-МОП сериях микросхем ток их потребления определяется быстродействием. Чем ниже быстродействие микросхемы (в пределах одной технологии), тем меньше её ток потребления.
Это не относится к КМОП сериям микросхем. В микросхемах, выполненных по КМОП технологии, ток потребления зависит от частоты, на которой работает в данный момент микросхема. Чем выше частота переключения логических элементов КМОП микросхемы, тем выше ток потребления этой микросхемы. То есть ток потребления в этих микросхемах регулируется автоматически, и причиной выбора конкретной серии микросхем остается только их стоимость.
Микросхемы с повышенной нагрузочной способностью обычно входят в состав любой серии микросхем, однако иногда требуются ещё большие токи. В этом случае можно использовать микросхемы из серий с повышенным быстродействием, например К1531. При необходимости формирования на выходе микросхемы потенциалов, превышающих напряжение питания цифровой микросхемы, можно применить микросхемы с открытым коллектором. В крайнем случае, для согласования микросхемы по току или напряжению можно применить транзисторный ключ.
4.1 Согласование микросхем из различных серий между собой
Рассмотрим сначала микросхемы, совместимые по логическим уровням с ТТЛ микросхемами. Выбор ТТЛ микросхем связан с тем, что ТТЛ логические уровни стали стандартом для современной цифровой техники. Даже если микросхемы внутри выполнены по КМОП технологии, они обычно формируют на выходе логические уровни, совместимые по напряжению с ТТЛ уровнями.
Стандартные ТТЛ микросхемы – это микросхемы, питающиеся от источника напряжения +5В. Зарубежные ТТЛ микросхемы получили название SN74. Конкретные микросхемы этой серии обозначаются цифровым номером микросхемы, следующим за названием серии. Например, в микросхеме SN74S00 содержится четыре логических элемента "2И-НЕ". Аналогичные микросхемы с расширенным температурным диапазоном (-55…+125 C) получили название SN54.
Отечественные микросхемы, совместимые с SN74 выпускались в составе серий К134 (низкое быстродействие, низкое потребление – SN74L), К155 (среднее быстродействие, среднее потребление – SN74) и К131 (высокое быстродействие и большое потребление). Затем были выпущены микросхемы повышенного быстродействия с диодами Шоттки. В названии зарубежных микросхем в обозначении серии появилась буква S. Отечественные серии микросхем сменили цифру 1 на цифру 5. Промышленностью выпускаются микросхемы серий К555 (низкое быстродействие, низкое потребление – SN74LS) и К531 (высокое быстродействие и большое потребление – SN74S).
В настоящее время отечественная промышленность производит микросхемы серий К1533 (низкое быстродействие, низкое потребление – SN74ALS) и К1531 (высокое быстродействие и большое потребление – SN74F).
Согласование по току.
Согласование микросхем приведённых выше ТТЛ серий между собой сводится к согласованию по току, так как напряжения логических уровней этих микросхем совпадают. Рассмотрим эквивалентную схему протекания выходного тока нуля I0 ТТЛ микросхемы, приведенную на рисунке 4.1.
Как видно из приведённой на рисунке 4.1 схемы, выходной ток ТТЛ микросхемы формируется из входных токов микросхем, подключенных к её выходу. Это означает, что суммарный входной ток микросхем-нагрузок не должен превышать максимального выходного тока микросхемы – источника логического сигнала.
Например, зададимся вопросом: можно ли в качестве нагрузки для микросхемы К134ЛБ1 использовать микросхему К531ТМ2. Максимальный допустимый ток нуля микросхем серии К134 составляет 1,8 мА. Входной ток нуля микросхем серии К531 равен 2 мА. То есть входной ток микросхемы нагрузки превышает максимальный ток микросхемы источника сигнала.
Это означает, что между микросхемой серии К134 и микросхемой серии К531 должна находиться промежуточная микросхема серии, у которой входной ток будет меньшей величины, например, К555ЛН1. У этой микросхемы входной ток нуля не превышает значения 0,4 мА, то есть к микросхеме К134ЛБ1 можно подключать до четырёх входов микросхем серии К555:
Iвых = NIвх555 = 40,4 мА = 1.6 мА < 1.8 мА
У микросхем серии К555 допустимый выходной ток составляет 4 мА. Поэтому к выходу микросхемы этого семейства можно подключать до двух входов микросхем серии К531. Более современные микросхемы серии К1531, обладающие быстродействием микросхем серии К531, но при этом обладают входным током 0,6мА. Поэтому эти микросхемы могут быть подключены непосредственно к выходу микросхем серии К134. Максимальное допустимое количество входов микросхем серии К1531, которые могут быть подключены к выходу микросхемы серии К134 (коэффициент разветвления) можно рассчитать из формулы:
Краз = Iвых134/Iвх1531 = 1,8 мА/0,6 мА =3
Рисунок 4.1 – Эквивалентная схема протекания выходного тока ТТЛ микросхемы
Точно так же можно определить коэффициент разветвления и для других сочетаний микросхем. Даже в пределах одной серии микросхем можно воспользоваться этой формулой. Возьмём в качестве примера микросхемы серии К1533. Их входной ток равен 0,2мА, выходной ток равен 8мА. В результате получаем коэффициент разветвления равный 40:
Краз = Iвых1533/Iвх153 = 8мА/0,2мА = 40
В настоящее время происходит активный переход к микросхемам с пониженным напряжением питания, таким как 3,3В; 2,5В или 1,8В. Поэтому кроме вопроса согласования микросхем по току встаёт вопрос согласования микросхем по напряжению логических уровней. Точно такой же вопрос возникает и при согласовании КМОП и ТТЛ микросхем.
Согласование микросхем с различным напряжением питания.
Снижение напряжения питания цифровых микросхем обусловлено двумя причинами. Первая – это снижение потребляемой микросхемами мощности. Снижение напряжения питания с 5 до 3,3В только по закону Ома приводит к снижению потребляемой мощности в 2,3 раза. Вторая причина – это уменьшение линейных размеров транзисторов. При снижении линейных размеров транзисторов, входящих в состав цифровых микросхем, уменьшается их пробивное напряжение. В настоящее время наиболее распространённым напряжением питания цифровых микросхем стало напряжение питания 3,3В.