Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Краткий конспект лекций по Статистике(1).doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.79 Mб
Скачать

Выборочное наблюдение

Наименование показателя

Вид выборки

повторная

бесповторная

Случайная выборка

Средняя (стандартная) ошибка

Средняя ошибка доли признака

Объем выборки

Типическая выборка

Средняя ошибка

Объем выборки

Серийная выборка

Средняя ошибка

Объем выборки

Величина ошибки зависит от колеблемости признака в генеральной совокупности и от объема выборки. Т.е. чем больше вариация тем больше ошибка, чем больше выборка, тем меньше ошибка. Величину называют предельной ошибкой выборки. Следовательно, предельная ошибка выборки , т.е. предельная ошибка равна t-кратному числу средних ошибок выборки.

t – коэффициент доверия

n – объем выборки;

N – объем генеральной совокупности;

s - число отобранных серий;

S – общее число серий;

- средняя из групповых дисперсий;

- межгрупповая дисперсия.

4.2. Ошибка выборки для альтернативного признака

Теорема Бернулли утверждает, что при достаточно большом объеме выборки вероятность P расхождения между долей признака в выборочной совокупности р и долей в генеральной совокупности Pг будет стремиться к 1.

, (4.10)

Для альтернативного признака среднее квадратическое отклонение равно , где . Тогда средняя ошибки выборки для альтернативного признака равна

, (4.11)

, (4.12)

Доля в генеральной совокупности Pг неизвестна и может быть только оценена при выборочном наблюдении

, (4.13)

При простой случайной выборке средняя квадратическая ошибки определяется по формулам:

Средняя квадратическая ошибка

Повторная выборка

Бесповторная выборка

При определении среднего размера признака

, (4.14)

, (4.16)

При определении доли признака

,(4.15)

. (4.17)

4.3 Определение необходимой численности выборки

Численность стандартной и предельной ошибки выборки связано с увеличением объема выборки n. При проектировании выборочного наблюдения заранее задается величина допустимой ошибки и доверительная вероятность для определения предельной ошибки .

Если P=0,954, то (2σ)

Если P=0,997, то (3σ)

, (4.18)

. (6.19)

Для определения дисперсии признака в генеральной совокупности используются приближенные методы.

  1. Можно провести несколько пробных обследований и по ним выбирать наибольшее значение дисперсии , где достаточно пробных наблюдений.

  2. Можно использовать данные прошлых или аналогичных обследований.

  3. Можно использовать размах вариации , если распределение нормальное, то , т.е. .

Объем выборки N

Повторный отбор

Бесповторный отбор

При определении среднего размера признака

, (4.20)

, (4.22)

При определении доли признака

, (4.21)

. (4.23)