
- •1. Козак а.А., ведущий инженер службы режимов и наладки
- •2. Хомяков в.Б., преподаватель фгоу спо двэт. Курс лекций составлен в соответствии с рабочей программой по курсу «Тепловые электрические станции», утверждённой 16 сентября 2008 г. Рецензия
- •Рецензия
- •Раздел 2 посвящен наиболее перспективным направлениям и разработкам в получении электрической энергии другими методами.
- •Содержание
- •Введение
- •Исторические условия возникновения и развития энергетической техники
- •Энергетические ресурсы и топливно-энергетический баланс.
- •Раздел 1. Тепловые электрические станции
- •Тема 1.1. Типы электрических станций
- •1.1.1. Классификация электрических станций
- •Контрольные вопросы.
- •1.1.2. Основные элементы паровых электростанций
- •1.1.3. Суточные графики потребления энергии
- •0 4 8 12 16 20 24 Часы суток
- •Тема 1.2. Технологическая схема тэс
- •1.2.1. Тепловая схема тэс
- •1.2.2. Тепловые нагрузки тэц
- •Контрольные вопросы.
- •1.2.3. Отопление и горячее водоснабжение (гвс)
- •1.2.4. Системы теплоснабжения
- •1.2.5. Подпитка тепловой сети
- •1.2.6. Основное и вспомогательное оборудование теплофикационных установок
- •Контрольные вопросы.
- •1.2.6. Топливный тракт электростанции
- •1.2.7. Сжигание жидкого топлива на электростанции
- •1.2.8. Сжигание газа на электростанции
- •Р ис.6 Схема газового хозяйства тэс:
- •Контрольные вопросы.
- •1.2.9. Газовоздушный тракт
- •Р ис.8 Горизонтальный трёхпольный электрофильтр:
- •1.2.10. Тракт шлакозолоудаления
- •Контрольные вопросы.
- •Тема 1.3. Органическое топливо
- •1.3.1. Виды органического топлива
- •1.3.2. Элементарный состав топлива
- •Контрольные вопросы.
- •1.3.3. Характеристики топлива.
- •1.3.4. Выход летучих и кокса, твёрдость топлива и коэффициент размолоспособности
- •1.3.5. Свойства топлива
- •Контрольные вопросы.
- •Тема 1.4. Элементы теории термодинамики
- •1.4.1. Общие определения в технической термодинамике и теплопередаче
- •1.4.2. Основные термодинамические параметры рабочего тела
- •1.4.3. Первый закон термодинамики
- •Контрольные вопросы.
- •1.4.4. Термодинамический процесс
- •1.4.5. Энтальпия
- •1.4.6. Основные термодинамические процессы в газах
- •1.4.7. Политропный процесс
- •1.4.8. Изохорный процесс
- •1.4.9. Изобарный процесс
- •1.4.10. Изотермический процесс
- •Контрольные вопросы.
- •1.4.12. Круговые процессы или циклы
- •1.4.13. Второй закон термодинамики
- •1.4.14. Цикл Карно
- •Контрольные вопросы.
- •1.4.15. Энтропия как параметр термодинамической системы.
- •1.4.16. Регенеративный цикл
- •1.4.17. Термодинамические процессы водяного пара
- •2. Удельную теплоту q1,2, подведённую к рабочему телу или отведённую от него находят по формулам:
- •4. При решении задач по h,s-диаграмме состояние рабочего тела определяют как точку пересечения любых двух линий и находят необходимые параметры пара.
- •1.4.18. Водяной пар
- •Контрольные вопросы.
- •1.4.19. Процесс парообразования и его изображение в р,V-диаграмме.
- •1. Подогрев холодной воды до температуры кипения tн.
- •2. Парообразование.
- •3. Перегрев пара.
- •1.4.20. Основные параметры воды и водяного пара
- •Контрольные вопросы.
- •Тема 1.5. Основное тепловое оборудование тэс
- •1.5.1. Общие сведения о паровых котлах
- •1.5.2. Устройство парового котла
- •Р ис.22 Схема устройства парового котла с естественной циркуляцией.
- •Контрольные вопросы.
- •1.5.3. Основные параметры и обозначения паровых котлов
- •1.5.4. Поверхности нагрева паровых котлов
- •1.5.4.1. Экономайзеры
- •1.5.4.2. Испарительные поверхности нагрева
- •1.5.4.3. Пароперегреватели
- •1.5.4.4. Воздухоподогреватели
- •Р ис.26 Трубчатый воздухоподогреватель:
- •Р ис.27 Схема работы регенеративного воздухоподогревателя:
- •Контрольные вопросы.
- •1.5.5. Паровые турбины
- •1.5.6. Основные узлы и конструкция паровой турбины
- •1.5.7. Принципиальная схема конденсационной установки, устройство конденсатора
- •Р ис.32 Принципиальная схема конденсационной установки:
- •1.5.8. Воздухоотсасывающие устройства
- •1.5.9 Питательные и циркуляционные насосы
- •Контрольные вопросы.
- •Тема 1.6. Теплоэлектроцентрали (тэц)
- •1.6.1. Общие положения.
- •1.6.2. Регулирование тепловой нагрузки
- •1.6.3. Покрытие основной и пиковой отопительной нагрузок
- •1.6.3. Схемы включения сетевых подогревателей
- •1.6.4. Основное и вспомогательное оборудование теплофикационных установок
- •Контрольные вопросы.
- •Тема 1.7. Компоновка главного корпуса и генеральный план тэс
- •1.7.1. Основные требования, предъявляемые к компоновке тепловых электрических станций
- •1.7.2. Компоновка главного корпуса электростанции. Общие положения.
- •1.7.3. Типы компоновок главного корпуса
- •I. Степень закрытия основных агрегатов (турбин и котлов). По этому признаку компоновки главного корпуса разделяются на:
- •1. Закрытые компоновки, при которых турбоагрегаты находятся внутри соответствующих помещений. Этот тип является основным.
- •II. Взаимное расположение помещений для турбогенераторов и парогенераторов. Этот признак характеризует в основном компоновки закрытого типа. По этому признаку различают следующие варианты:
- •2. Турбоагрегаты и парогенераторы размещаются в двух отдельных параллельных зданиях, находящихся на небольшом расстоянии друг от друга и соединенных переходными
- •Контрольные вопросы.
- •1.7.3. Строительная компоновка главного корпуса тэс
- •1.7.4. Компоновка помещения парогенераторов
- •1.7.5. Компоновка машинного зала и деаэраторного отделения
- •1.7.6. Генеральный план электростанции
- •Контрольные вопросы.
- •Тема 1.8. Газотурбинные, парогазовые и атомные электрические станции
- •1.8.1. Газотурбинные электростанции
- •1. 8.2. Область применения гту
- •1.8.3. Парогазовые установки электростанции
- •1.8.2. Атомные электростанции. Общие сведения
- •2 Замедлитель 39Np нептуний
- •239Pu плутоний 235u Медленные нейтроны
- •1.8.3. Принципиальные тепловые схемы аэс
- •1.8.4. Сооружения, системы хранения и транспортировки топлива на аэс
- •Раздел 2. Альтернативные источники получения электрической энергии
- •Тема 2.1. Нетрадиционные способы получения электрической энергии
- •2.1.1. Электростанции, использующие нетрадиционные виды энергии
- •2.1.2. Гидроэлектростанции.
- •Тема 2.2. Энергетическое производство и окружающая среда
- •2.2.1. Экология
- •2.2.2. Экологические проблемы энергетики и влияние человека на окружающую среду
- •2.2.3. Экологические проблемы тепловой энергетики
- •2.2.4. Город и охрана природы
- •2.2.5. Экологические проблемы гидроэнергетики
- •2.2.6. Экологические проблемы ядерной энергетики
- •2.2.7. Некоторые пути решения проблем современной энергетики по охране окружающей среды
1.2.2. Тепловые нагрузки тэц
Тепловая энергия требуется для технологических нужд промышленности, для отопления и вентиляции производственных, жилых и общественных зданий, кондиционирования воздуха, для горячего водоснабжения (ГВС). Для производственных целей обычно требуется перегретый пар, температура которого на 15÷200С выше температуры насыщения, так как при транспортировке к потребителю часть пара конденсируется и соответственно при этом происходит потеря теплоты. На отопление, вентиляцию от ТЭЦ вода поступает при температуре 95÷1800С, в зависимости от расчётного температурного графика.
Таким образом, централизованная система теплоснабжения включает в себя:
теплоисточник (ТЭЦ или котельная), трубопроводы для транспортирования тепла (пара или воды) и установки теплопотребителей, использующие теплоту для промышленных или бытовых нужд.
Централизованное теплоснабжение от ТЭЦ в качестве источника теплоты называется теплофикацией. Тепловая нагрузка электростанции, определяемая расходом теплоты на производственные процессы и бытовые нужды (горячее водоснабжение), практически не зависит от температуры наружного воздуха.
Однако летом эта нагрузка несколько меньше, чем зимой. Ведь летом отопления нет. В то же время промышленная и бытовая тепловые нагрузки резко изменяются в течение суток. Кроме того, среднесуточная нагрузка электростанции при использовании теплоты на бытовые нужды в конце недели, в предпраздничные и праздничные дни значительно выше, чем в другие рабочие дни недели.
При небольших изменениях температуры наружного воздуха отопительная и вентиляционная нагрузки жилых помещений в течение суток сохраняются практически постоянными. В тех же условиях отопительная нагрузка общественных зданий и промышленных предприятий может в течение суток заметно изменяться, в нерабочие дни недели ― значительно понижаться. Вентиляционная нагрузка в нерабочее время вообще выключается. Такое изменение расхода теплоты на отопление и вентиляцию общественных зданий и промышленных предприятий приводит к экономии топлива, расходуемого на эти цели.
Р
ассмотрим
суточный график тепловой нагрузки на
рис.3 ( ― зима, ―лето).
Отопительная тепловая нагрузка, расход тепла на вентиляцию и кондиционирование воздуха зависят от температуры наружного воздуха и имеют сезонный характер.
Расход теплоты на отопление и вентиляцию ― наибольший зимой и полностью отсутствует в летние месяцы. На кондиционирование воздуха теплота расходуется только летом, поэтому расширение сферы применения кондиционированного воздуха приведёт к повышению эффективности теплофикации.
На
кондиционирование воздуха теплота
расходуется
Q,
только
летом, поэтому расширение сферы применения
Г
Дж/ч
кондиционированного воздуха приведёт
к повышению
эффективности
теплофикации.
ТЭЦ
отпускает тепло на отопление по расчётным
графикам
в зависимости от температуры наружного
воздуха.
Существуют такие расчётные температурные
0 6 12 18 24 ч графики: 95/700С, 130/700С, 150/700С, 180/700С.
Рис. 3. Первая цифра означает температуру прямой сетевой воды, идущей к потребителю на отопление, вторая цифра ― температуру обратной сетевой воды, идущей от потребителя на ТЭЦ. Использование температурного графика от расчётной температуры наружного воздуха на отопление. Температурный график 180/700С используется редко и в основном на Крайнем Севере, где очень холодно. Например, Владивостокская ТЭЦ-1 работает по температурному графику 150/700С при расчётной температуре наружного воздуха –240С, а ВТЭЦ-2 ― по графику 130/700С и в настоящее время является отопительной котельной на мазуте.
Централизованный отпуск тепла ТЭЦ и частично другими источниками (котельными) на отопление, вентиляцию и бытовые нужды составляет около трети всего теплового потребления.
Максимальный расход тепла на отопление соответствует расчётной температуре наружного воздуха tрн, которая принимается равной средней температуре наиболее холодных пятилеток из восьми наиболее холодных зим на пятидесятилетний период.
Температура наружного воздуха зависит от климатических условий местности и в течение года изменяется в широких пределах. Отопительно-вентиляционная нагрузка отключается от потребителей при температуре наружного воздуха +8÷100С, что соответствует продолжительности отопительного сезона около 5000 ч/год при общей продолжительности года 8760 часов.
Приведем несколько примеров продолжительности отопительного сезона некоторых городов при расчётной температуре наружного воздуха для отопления:
г. Анадырь (-400С) 7400 часов г. Благовещенск (-340С) 5088 часов
г. Владивосток (-240С) 4824 часа г. Москва (-260С) 4920 часов
Промышленные предприятия являются круглогодовыми потребителями технологического пара и горячей воды и одновременно сезонными потребителями теплоты с горячей водой для отопления и вентиляции. Пароснабжение таких потребителей должно обеспечиваться с высокой надёжностью, так как перерывы в подаче пара или даже снижение подачи влекут за собой большой материальный ущерб из-за нарушения технологического процесса.