Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Книги для подготовки к экзамену по ИТ (по специальности Экономика и организация производства в АПК) / Информационные системы и технологии в экономике 2-е издание - под редакцией проффесора В.И.Лойко

.pdf
Скачиваний:
51
Добавлен:
05.01.2020
Размер:
20.05 Mб
Скачать

Однако во многих задачах исходный набор точек задается приближенно, и, значит, требование неукоснительного прохождения графика искомой функции через каждую точку этого набора оказывается излишним. В этом случае используются методы сглаживания, при которых можно отказаться от требования строго однозначного проектирования искомой кривой на координатную ось, а поверхности — на координатную плоскость.

4.7.2. РЕАЛИЗАЦИЯ ПРОЦЕДУР ОТОБРАЖЕНИЯ

На физическом уровне отображение производится в основном с помощью компьютерных дисплеев. При необходимости получения твердой копии используются принтеры и плоттеры. Основное использование дисплея в качестве оконечного устройства отображения связано с его высоким быстродействием, значительно превышающим скорость реакции человеческого глаза, что особенно важно в системах реального времени и при отображениях анимации и видеоизображении.

Для получения графического изображения на экране дисплея используются два основных метода: векторный (функциональный) и растровый. Векторный метод предполагает вывод графического изображения с помощью электронного луча, последовательно "вычерчивающего" на экране дисплея линии и кривые в соответствии с математической моделью (функцией) этого объекта. "Вычерчивание" — это последовательное засвечивание пикселей экрана. Так как каждый пиксель имеет свою координату (пару чисел), то этот метод преобразует последовательность чисел (вектор) в светящиеся точки. Отсюда название метода. Для того чтобы изображение на экране было неподвижным для глаза человека, луч пробегает по определенным пикселям многократно (не менее 16 раз в секунду). Векторный метод — наиболее быстродействующий и применяется при выводе относительно несложных графических объектов (графики, чертежи, номограммы и т.п.) при научных и инженерных исследованиях. Еще одним очень важным достоинством метода являются минимальные для графических систем требования к ресурсам ЭВМ (памяти и производительности).

Растровый (экранный) метод привнесен в компьютерную графику из телевидения. При использовании этого метода электрон-

152

ный луч сканирует экран монитора (дисплея) слева направо, после каждого прохода опускаясь на одну строку пикселей, сотни раз в секунду (обычно 625 раз). После прохождения нижней строки луч возвращается к первой строке (обратный ход). Чтобы при обратном ходе на экране не прочерчивалась диагональная линия, луч на это время гасится. Такое сканирование экрана проводится 25 раз в секунду. Полностью просканированный экран называется кадром. Если интенсивность электронного луча постоянна, то на экране создается равномерный фон из одинаково светящихся пикселей. При выводе на экран графического объекта в соответствующих его модели точках интенсивность луча изменится, в результате чего "прорисовывается" сам графический объект. В цветных дисплеях можно задавать цвета как фона, так и изображения. Современные графические адаптеры дисплеев позволяют в принципе создавать бесчисленное множество цветов.

Растровый метод дает возможность отображать на экране дисплеев практически любое изображение, как статическое (неподвижное), так и динамическое (движущееся). Другими словами, метод универсален, но, как и все универсальное, требует больших затрат ресурсов ЭВМ. Поэтому если основной функцией вычислительной системы является работа с изображениями (системы автоматизации проектирования, системы создания и обработки изображений, анимация, создание киноэффектов и т.д.), то в этом случае разрабатываются специальные комплексы, называемые графическими станциями, в которых все ресурсы ЭВМ направлены на обработку, хранение и отображение графических данных.

Процедуры отображения реализуются с помощью специальных программ, оперирующих громадными объемами данных и требующих поэтому значительной емкости оперативной памяти ЭВМ и высокой производительности процессора. Не случайно современный графический пользовательский интерфейс операционной системы ПК удовлетворительно работает при емкости оперативной памяти в 256 Мбайт и тактовой частоте процессора не менее 1 ГГц. У графических станций требования к ресурсам ЭВМ существенно выше. Поэтому, помимо дополнительного процессора дисплея, в ЭВМ графических станций используются и нетрадиционные методы обработки данных (конвейеризация и параллелизация) и, следовательно, нетрадиционные архитектуры вычислительных систем.

153