
- •Общая энергетика.
- •Современные способы получения электрической энергии.
- •1.1. Тепловые конденсационные электрические станции.
- •1.2. Теплоэлектроцентрали.
- •1.3. Газотурбинные установки
- •1.4. Парогазовые установки
- •1.5. Гидравлические электрические станции.
- •1.6. Аккумулирующие электрические станции
- •1.7. Приливные электрические станции
- •1.8. Магнитогидродинамическое преобразование энергии
- •1.9. Геотермальные электростанции
- •1.10. Ветровые электростанции
- •1.11. Класификация электрических станций.
- •1.12. Солнечные электростанции
- •1.13. Использование морских возобновляемых ресурсов
- •Тепловые электрические станции и их технологическая схема.
- •Термодинамический цикл паротурбинных электростанций.
- •2.2. Способы производства электрической и тепловой энергии.
- •2.3.Принципиальная технологическая схема тэц
- •2.5. Двухвальные турбоагрегаты.
- •3. Производство пара на электрической станции.
- •3.1. Место и значение парового котла в системе электростанции
- •3.2. Классификация паровых котлов
- •3.3. Технологическая схема производства пара
- •3.4. Основные характеристики паровых котлов
- •4. Котельные установки.
- •4.1. Паровой котел и его основные элементы
- •4.2. Поверхности нагрева парового котла
- •4.3. Конструкции отечественных паровых котлов.
- •4.4. Тепловой баланс парового котла.
- •5. Паровые и газовые турбины.
- •5.1. Действие рабочего тела на лопатки
- •5.2. Активные турбины
- •5.3. Реактивные турбины
- •5.4. Мощность и кпд турбины
- •5.5. Классификация турбин
- •5.6. Конденсационные устройства паровых турбин
- •5.7. Газотурбинные установки (гту)
- •5.8. Турборасширительные машины
- •6. Технологические схемы аэс
- •6.1. Аэс с водо-водяными энергетическими реакторами
- •6.2. Аэс с канальными водографитовыми кипящими реакторами
- •6.3. Аэс с реакторами на быстрых нейтронах
- •7 Повышение эффективности использования топливно-энергетических ресурсов.
- •7.1. Основные способы организации энергосберегающих технологий.
- •7.2. Утилизация вторичных (побочных) энергоресурсов (вэр)
- •8. Типы гидроэнергетических установок и схемы использования водной энергии
- •8.1. Типы гидроэнергетических установок.
- •8.2. Напор, расход и мощность гидроэнергетических установок
- •8.3. Основные схемы использования водной энергии
- •8.4. Особые схемы использования водных ресурсов
- •8.5. Схемы насосного аккумулирования энергии
- •8.6. Схемы использования энергии приливов
- •9. Гидравлические турбины.
- •9.1. Классификация гидротурбин
- •9.2. Активные гидротурбины.
- •9.3. Реактивные гидротурбины
- •9.4. Основные элементы проточного тракта реактивных гидротурбин
- •9.5. Кавитация
- •Гидроэлектростанции и основы использования водной энергии.
- •10.1. Состав и компоновка основных сооружений гэс
- •10.3. Здания гэс.
- •10.4. Водохранилище, нижний бьеф и их характеристики.
- •10.5. Регулирование речного стока водохранилищами гэс.
- •10.6. Каскадное и комплексное использование водных ресурсов.
1.9. Геотермальные электростанции
Геотермальные электростанции в качестве источника энергии используют теплоту земных недр. Известно, что в среднем на каждые 30—40 м в глубь Земли температура возрастает на ГС. Следовательно, на глубине 3— 4 км вода закипает, а на глубине 10—15 км температура Земли достигает 1000-1200РС. В некоторых частях планеты температура горячих источников достаточно высокая и в непосредственной близости от поверхности. Эти районы наиболее благоприятны для сооружения геотермальных станций. Так, в Новой Зеландии на геотермальных станциях вырабатывается 40% всей электроэнергии, в Италии — 6%. Значительная доля электроэнергии приходится на такие станции и в ряде других стран.
В СССР для ряда районов, например Камчатки и Курильских островов, сооружение геотермальных станций может оказаться экономически оправданным. Так, на Камчатке успешно эксплуатируется опытно-промышленная геотермальная станция. Обсуждаются также возможности использования действущих вулканов на Курильских островах.
В более отдаленном будущем предполагается использование высокотемпературных слоев мантии (до 1000°С) для получения пара, в который будет превращаться вода, закачиваемая в искусственно созданные «вулканические» жерла. Разумеется, что получаемая таким образом энергия будет «чистой» и не будет влиять на биосферу (огромная масса мантии практически исключает влияние на ее состояние отбираемой теплоты).
Использование
геотермальной энергии в современных
условиях
в значительной степени зависит от
затрат, необходимых
для вывода на поверхность геотермального
теплоносителя в виде пара или горячей
воды. Все действующие
в настоящее время геотермальные
электростанции
располагаются в таких районах Земли,
в которых
температура теплоносителя достигает 150—360°С на глубинах, не превышающих 2—5 км.
В последнее время более интенсивно проводятся поиски участков Земли с минимальной глубиной расположения геотермальных ресурсов. На таких участках рентабельно создание систем, осуществляющих теплоснабжение и получение электрической энергии.
Практически все геотермальные источники содержат примеси в виде различных химических элементов. Химическая активность подземных теплоносителей, в составе которых могут быть ртуть, мышьяк, вызывает отрицательные экологические эффекты, а также усиливает коррозию конструкционных материалов энергетического оборудования. Извлечение химических элементов до отбора теплоты от теплоносителя позволяет снизить экологическое влияние, уменьшить химическую коррозию и получить пенное сырье для химической промышленности. Так, в некоторых скважинах Южно-Каспийского бассейна в 1 л воды содержится, мг: свинца — 77, цинка — 5, кадмия — 2, меди — 15.
В настоящее время геотермальные источники больше используются для теплоснабжения, чем для выработке электрической энергии. Это объясняется как техническими трудностями в работе геотермальных электростанций, так и высокой Стоимостью их в расчете на единицу установленной мощности.