- •Общая энергетика.
- •Современные способы получения электрической энергии.
- •1.1. Тепловые конденсационные электрические станции.
- •1.2. Теплоэлектроцентрали.
- •1.3. Газотурбинные установки
- •1.4. Парогазовые установки
- •1.5. Гидравлические электрические станции.
- •1.6. Аккумулирующие электрические станции
- •1.7. Приливные электрические станции
- •1.8. Магнитогидродинамическое преобразование энергии
- •1.9. Геотермальные электростанции
- •1.10. Ветровые электростанции
- •1.11. Класификация электрических станций.
- •1.12. Солнечные электростанции
- •1.13. Использование морских возобновляемых ресурсов
- •Тепловые электрические станции и их технологическая схема.
- •Термодинамический цикл паротурбинных электростанций.
- •2.2. Способы производства электрической и тепловой энергии.
- •2.3.Принципиальная технологическая схема тэц
- •2.5. Двухвальные турбоагрегаты.
- •3. Производство пара на электрической станции.
- •3.1. Место и значение парового котла в системе электростанции
- •3.2. Классификация паровых котлов
- •3.3. Технологическая схема производства пара
- •3.4. Основные характеристики паровых котлов
- •4. Котельные установки.
- •4.1. Паровой котел и его основные элементы
- •4.2. Поверхности нагрева парового котла
- •4.3. Конструкции отечественных паровых котлов.
- •4.4. Тепловой баланс парового котла.
- •5. Паровые и газовые турбины.
- •5.1. Действие рабочего тела на лопатки
- •5.2. Активные турбины
- •5.3. Реактивные турбины
- •5.4. Мощность и кпд турбины
- •5.5. Классификация турбин
- •5.6. Конденсационные устройства паровых турбин
- •5.7. Газотурбинные установки (гту)
- •5.8. Турборасширительные машины
- •6. Технологические схемы аэс
- •6.1. Аэс с водо-водяными энергетическими реакторами
- •6.2. Аэс с канальными водографитовыми кипящими реакторами
- •6.3. Аэс с реакторами на быстрых нейтронах
- •7 Повышение эффективности использования топливно-энергетических ресурсов.
- •7.1. Основные способы организации энергосберегающих технологий.
- •7.2. Утилизация вторичных (побочных) энергоресурсов (вэр)
- •8. Типы гидроэнергетических установок и схемы использования водной энергии
- •8.1. Типы гидроэнергетических установок.
- •8.2. Напор, расход и мощность гидроэнергетических установок
- •8.3. Основные схемы использования водной энергии
- •8.4. Особые схемы использования водных ресурсов
- •8.5. Схемы насосного аккумулирования энергии
- •8.6. Схемы использования энергии приливов
- •9. Гидравлические турбины.
- •9.1. Классификация гидротурбин
- •9.2. Активные гидротурбины.
- •9.3. Реактивные гидротурбины
- •9.4. Основные элементы проточного тракта реактивных гидротурбин
- •9.5. Кавитация
- •Гидроэлектростанции и основы использования водной энергии.
- •10.1. Состав и компоновка основных сооружений гэс
- •10.3. Здания гэс.
- •10.4. Водохранилище, нижний бьеф и их характеристики.
- •10.5. Регулирование речного стока водохранилищами гэс.
- •10.6. Каскадное и комплексное использование водных ресурсов.
4.4. Тепловой баланс парового котла.
Тепловой баланс котла, как и любого теплотехнического агрегата, характеризуется равенством между количествами подведенной (располагаемой) и расходуемой теплоты: Qприх = Qрасх Обычно тепловой баланс составляют на единицу количества сжигаемого топлива 1 кг твердого или жидкого, либо 1 м3 газообразного топлива, взятый при нормальных условиях. С учетом этого и пренебрегая физической теплотой топлива и холодного воздуха, можно считать
Qприх~Qi (18.4)
Здесь Qrt — низшая теплота сгорания единицы топлива в рабочем состоянии.
Часть теплоты, затрачиваемая на подогрев, испарение воды и перегрев пара, составляет использованную теплоту Qiостальное — потери. В итоге уравнение теплового баланса котла будет иметь вид
(18.5)
где Q2, Q3, Q4, Q5 — потери теплоты соответственно с уходящими газами, от химической неполноты сгорания топлива, от механического недожога, через ограждения топки и конвективных газоходов.
В процентах от располагаемой теплоты Q[ тепловой баланс может быть записан так (см. § 17.1):
100 = q1+q2+q3+q4+Q5 (18.6)
Тепловой баланс парового котла с обозначением основных составляющих приходной и расходной частей приведен на схеме рис. 18.12. Замкнутый контур на рисунке представляет теплоту горячего воздуха Qr в, забираемую от продуктов сгорания при относительно низкой температуре и передаваемую в топку.
Доля теплоты, использованной в котельном агрегате (переданной воде и пару) , есть коэффициент полезного действия котла брутто т)к (так называют КПД, подсчитанный без учета затрат энергии на собственные нужды).
Таким образом,
(18.7)
или
(18.8)
Теплота Q1 воспринятая водой и паром в котле, может быть определена из уравнения
(18.9)
Здесь hne и hnb — энтальпии перегретого пара и питательной воды.
Р
ассматривая
выражение (18.9) совместно
с (18.7), нетрудно получить формулу
для расчета расхода топлива, В:
(18.10)
Величина г|к взята здесь в долях единицы.
По формуле (18.7) КПД котла подсчитывают по данным балансовых испытаний (прямой баланс), позволяющих точно измерить расход топлива в установившемся (стационарном) режиме работы. Поэтому испытанию котла должна предшествовать длительная его работа с постоянной нагрузкой, при которой и проводится испытание. Формула (18.8), называемая формулой обратного баланса, используется в расчетах проектируемого котла. При этом каждая из составляющих q, принимается по рекомендациям [16], разработанным на основе многократных испытаний Котлов в условиях, аналогичных проектным. Эта формула используется также в случаях, когда не представляется возможным точно замерить расход топлива. Современные котлы являются довольно совершенными агрегатами; их КПД превышает 90%.
5. Паровые и газовые турбины.
5.1. Действие рабочего тела на лопатки
Турбомашина (турбина) является двигателем, в котором теплота рабочего тела — пара или газа — последовательно преобразуется в кинетическую энергию струи, а затем в механическую работу.
Вытекающий из сопла поток рабочего тела, обладающий значительной кинетической энергией, действует на лопатки с силой, которая зависит от формы их поверхности (рис. 20.1).
Расчеты по уравнению количества движения показывают, что при прочих равных условиях, например при заданной скорости истечения со и расходе рабочего тела /п, с наибольшей силой поток будет воздействовать на лопатку, форма которой обеспечивает его поворот на 180° (рис. 20.1, б). Если позволить лопаткам перемещаться под действием струи, то движение газа по схеме (рис. 20.1, б) обеспечит при одинаковой во всех схемах скорости и наибольшую мощность, равную произведению действующей на лопатку силы на скорость ее перемещения. Отсюда, в частности, следует, что для получения максимальной работы поток должен не ударяться о поверхность, а обтекать ее плавно, без завихрений.
Н
о
использовать наиболее выгодный(с
точки зрения получения максимальной
мощности)
профиль лопаток для теплового
двигателя непрерывного действия,
например
турбомашины, невозможно, так
как практически не удается при
вращательном движении диска с
лопатками подать на них газ в направлении,
совпадающем
с плоскостью вращения. Поэтому
в турбинах струя газа, вытекающего
из неподвижного сопла, подается на
лопатки, изогнутые под некоторым углом
к плоскости вращения (рис.
20.1, в), причем по конструктивным
соображениям
этот угол не удается сделать
меньше 11 —16° (в ряде случаев его принимают
равным 20—30°).
Рассмотренный принцип действия потока на поверхности различных форм называется активным, в отличие от реактивного, когда сила создается за счет реакции струи, вытекающей из сопла (рис. 20.1, г). Реактивная сила, приложенная к цилиндру, направлена согласно третьему закону Ньютона в сторону, противоположную истечению газов. С такой же силой действует струя на поверхность (активный принцип, рис. 20.1, а), но при реактивном способе конструкция теплового двигателя получается более рациональной, так как совмещаются сопловой и двигательный аппараты.
