
- •1.Дать определение, что означает петрофизика пласта?
- •2.Что такое глинистость, какова ее роль в формировании физических свойств коллектора.
- •3.Какие свойства и формы нахождения глинистых минералов в коллекторах определяют фес последних.
- •4. Что такое первичные и вторичные поры в горных породах. Назовите породы, наиболее типичные с точки зрения этого разделения.
- •5. По какому физическому признаку классифицируются поры по размерам. Назовите размеры сверхкапиллярных, капиллярных, субкапиллярных пор и микропор.
- •6. Что такое коэффициент пористости пород. Какие виды пористости Вы знаете. Как связаны между собой коэффициенты общей, открытой, эффективной и динамической пористости.
- •7. Назовите методы изучения структуры емкостного пространства. На чем основаны эти методы.
- •8.Объясните физическую сторону необратимого уменьшения пористости с глубиной. Что такое коэффициент необратимого уплотнения пород. От чего он зависит.
- •9. Что мы понимаем под упругими (обратимыми) изменениями пористости. Где они наблюдаются на практике.
- •10. Дайте краткую характеристику различных фаз, присутствующих в поровом пространстве горной породы.
- •11. Сформируйте понятия: физически связанная и химически связанная вода.
- •12.Перечислите компоненты физически связанной воды и способы их определения.
- •13.Свойства компонент физически связанной воды.
- •14.Остаточная вода. Лабораторные способы ее определения.
- •15. Как формируется зависимость остаточной водонасыщенности от пористости коллектора.
- •16.Почему эффективная пористость может быть выражена через относительную глинистость.
- •17.Двойной электрический слой. Его происхождение, строение и свойства.
- •18.Гидрофильные и гидрофобные поверхности. Лабораторные методы изучения гидрофобности.
- •19.Коэффициенты нефте-, газо- и водонасыщения коллекторов нефти и газа.
- •20. .Плотность горных пород, от чего она зависит и в каких единицах измеряется.
- •21. От чего зависит плотность минералов, а также газов и жидкостей, насыщающих породы.
- •22.Как меняется плотность минералов, слагающих осадочные породы, с глубиной.
- •23.Изменение плотности осадочных пород с глубиной, как классифицируются породы по плотности.
- •24.Как определяются коэффициенты абсолютной, фазовой и относительной проницаемости горных пород.
- •25. Какие величины определяют проницаемость трещиноватых пород. Почему проницаемость кернов пород не всегда может представлять проницаемость пород в естественном залегании.
- •26.Как изменяется проницаемость горных пород с межзерновой пористью от глубины залегания.
- •32. Дайте краткий обзор природы диэлектрической проницаемости различных минералов и жидкостей, насыщающих породу.
- •34.Какие задачи решаются по данным гис на основе петрофизических связей.
- •35.Дайте классификацию известных Вам петрофизических связей.
- •36.Сформулируйте критерии выделения продуктивных коллекторов и дайте их петрофизическое обоснование.
- •37.Какой петрофизической информацией надо располагать для надежного определения коэффициента пористости по данным гис.
- •38.Какие критерии надежности петрофизических связей Вам известны.
- •39.Что такое петрофизическое районирование, для каких целей оно применяется.
- •40.Каковы направления использования петрофизических исследований при комплексной интерпретации геофизических данных.
14.Остаточная вода. Лабораторные способы ее определения.
Суммарное содержание в породе капиллярно-удержанной и физически связанной воды определяют как остаточную воду, характеризуя содержание ее в объеме пор породы коэффициентом остаточного водонасыщения:
Для определения kв.о в практике петрофизических лабораторий применяют несколько способов, которые можно разделить на две группы. К первой относится единственный способ, получивший название прямой метод, или метод Закса, в котором определяют количество воды, содержащейся в образце породы, извлеченном при вскрытии продуктивного коллектора скважиной с нефильтрующейся промывочной жидкостью — раствором на нефтяной основе (РНО). При реализации прямого метода необходимым условием является сохранение в образце до эксперимента -всех флюидов, заполняющих поры образца в пластовых условиях.
Способы второй группы различаются условиями моделирования остаточной воды в образце. Общим для них является подготовка образца к эксперименту путем экстрагирования из образца углеводородов и солей, растворенных в пластовой воде, заполнявших поры образца в естественном залегании. Способы второй группы иногда называют косвенными.
15. Как формируется зависимость остаточной водонасыщенности от пористости коллектора.
В низкопоровых коллекторах содержание остаточной воды резко возрастает до 40-60% от порового обьема.
16.Почему эффективная пористость может быть выражена через относительную глинистость.
В полимиктовых песчаниках и алевролитах часть глинистого материала содержится в частично или полностью преобразованных зернах полевых шпатов и обломков других пород. Характерно, что если глинистый цемент, контактный или типа заполнения пор, расположенный между скелетными зернами кварцевых и полимиктовых песчаников и алевролитов, приводит к снижению их эффективной пористости и проницаемости, глинистый материал преобразованных зерен и обломков пород мало влияет на фильтрационно-емкостные свойства коллектора.
17.Двойной электрический слой. Его происхождение, строение и свойства.
В объеме, занимаемом пленочной водой, расположен двойной электрический слой (ДЭС), возникающий близ границы твердой и жидкой фаз благодаря тому, что поверхность твердой фазы имеет электрический заряд, обычно отрицательный. Двойной слой на границе фаз состоит из внутренней и внешней обкладок.
Внутренняя состоит из анионов кристаллической решетки минералов, а внешняя из катионов компенсирующих отрицательный заряд поверхности твердой фазы.
Св-ва – повышенная вязкость, температура замерзания и растворимости солей ниже чем у свободной воды.
18.Гидрофильные и гидрофобные поверхности. Лабораторные методы изучения гидрофобности.
Избирательная смачиваемость поверхности твердой фазы водой определяется величиной угла смачивания 0 на границе воды и другой подвижной фазы в капилляре (воздух, газ, нефть). При θ = 0 поверхность считается полностью гидрофильной; при 0<θ<90° поверхность преимущественно гидрофильна; при 90°<θ< 180° — преимущественно гидрофобна; при θ=180 полностью гидрофобна. Причины частичной или полной гидрофобности поверхности могут быть различными: специфические свойства вещества твердой фазы, состав и физические свойства пластовой воды, нефти и газа.
Среди многочисленных способов определения фильности поверхности твердой фазы рассмотрим следующие.
П. А. Ребиндер предложил в качестве количественной меры смачиваемости (фильности) изучаемого объекта водой коэффициент
где Qсм.в — теплота смачивания 1 г изучаемого вещества водой;. Qсм.н — теплота смачивания того же вещества неполярной жидкостью, например бензолом.
Для преимущественно гидрофильных объектов β>1, для гидрофобных β<1. Для наиболее гидрофильных представителей осадочных пород — глин — ^ достигает значений 2—3. Величина Qсм.в для глин составляет 8,4—84 Дж/г, для глинистого цемента пород-коллекторов 4,2—21 Дж/г, для скелетных зерен пород-коллекторов значительно меньше 16,8 Дж/г. Сравнение значений β, полученных на одном и том же образце до (β1) и после (β2) его экстракции позволяет оценить количественно-степень гидрофобизации «сырого» образца отношением
Если «сырой» образец полностью гидрофилен, β1= β2 и α=0. Способ П. А. Ребиндера, имеющий четкую физическую основу, не получил, однако, широкого применения в практике лабораторий петрофизических и физики пласта ввиду низких значений Qсм.в в породах-коллекторах, имеющих небольшую поверхность адсорбции SП, и вследствие этого — недостаточной надежности оценки степени гидрофобности объекта.
Коэффициент смачиваемости β можно определить как отношение времен спин-решеточной релаксации τi в методе ядерно-магнитного резонанса, установленных на кусочках одного и того же образца, насыщенных водой τiв и бензолом τiб
В качестве показателя смачиваемости используют также отношение времен спин-решеточной τ1 и спин-спиновой τ2 релаксаций [29].
Изменение степени смачиваемости образца водой после экстракции устанавливают, сравнивая изотермы адсорбции паров воды, полученные до и после экстракции образца. В качестве количественной меры можно использовать коэффициент гигроскопичности kв.г при p/ps = 0,55, установленный на образце до. (kв.г1) и после (kв.г2) экстракции. Величина
Отношение AS/S можно оценить, сравнивая результаты определения емкости обмена по метиленовому голубому на образце до и после экстракции.