
- •1.Биологическая роль кислорода в организме человека. Применение препаратов в медицине
- •2. Биологическая роль углерода в организме человека. Применение препаратов в медицине
- •3. Биологическая роль натрияи калия в организме человека. Применение препаратов в медицине.
- •4. Биологическая роль кальция в организме человека. Применение препаратов в медицине.
- •6. Биологическая роль железа в организме человека. Применение препаратов в медицине.
- •7. Биологическая роль цинка в организме человека. Применение препаратов в медицине.
- •Пиритион цинк активированный (Pyrithionezinc). Синонимы:Скин-кап
- •Цинка сульфат (Zincsulfate)
- •Поверхностное натяжение, поверхностная активность. Уравнение Гиббса. Пав, особенности строения, примеры, применение. Схема строения клеточной мембраны
- •Адсорбция на границе раздела твердое тело – газ. Изотерма адсорбции. Уравнение Ленгмюра.
- •Адсорбция на границе твердое тело – раствор. Правило Ребиндера. Изотерма адсорбции.Уравнение Ленгмюра.Гемосорбция, энтеросорбция.
- •Адсорбция электролитов. Правило Панета-Фаянса.
- •Хроматографические методы исследования. Классификация. Применение в медицине.
- •Общая характеристика вмс. Классификация. Применение в медицине. Коллоидная защита
- •Изоэлектрическая точка белка. Изменение свойств белков в изоэлектрическом состоянии
- •1.Координационная теория а. Вернера. Состав и классификация комплексных соединений
- •По заряду комплекса
- •По числу мест, занимаемых лигандами в координационной сфере
- •По природе лиганда
- •Свойства коллоидных растворов
- •Классификацияколлоидныхрастворовпоагрегатному состоянию дисперсной фазы и дисперсионной среды. Примеры.
- •Охарактеризовать методы получения коллоидных растворов.
- •Методы диспергирования
- •Методы конденсации
- •Методы очистки коллоидных растворов. Схема диализа.Гемодиализ.
- •Молекулярно-кинетические свойства коллоидных растворов.
- •Электрокинетические свойства коллоидных растворов. Применение электрофореза в медицине
- •Факторы устойчивости коллоидных растворов. Коагуляция. Порог коагуляции. Правило Шульце-Гарди.
Факторы устойчивости коллоидных растворов. Коагуляция. Порог коагуляции. Правило Шульце-Гарди.
Под устойчивостью дисперсной системыпонимают постоянство во времени ее состояния и основных свойств: дисперсности, равномерного распределения частиц дисперсной фазы в объеме дисперсионной среды и характера взаимодействия между частицами.
Агрегативная устойчивость дисперсных систем определяется термодинамическими и кинетическими факторами.
Термодинамические факторы, действие которых направлено на снижение поверхностного натяжения и увеличение энтропии, уменьшают вероятность эффективных соударений между частицами, создают потенциальные барьеры:
электростатический фактор заключается в уменьшении поверхностного натяжения вследствие возникновения двойного электрического слоя на поверхности частиц. Он способствует созданию электростатических сил отталкивания, возрастающих при увеличении потенциала поверхности частиц и особенно электрокинетического потенциала ;
адсорбционно-сольватный фактор состоит в уменьшении межфазного натяжения и энергии Гиббса поверхности раздела в результате взаимодействия частиц с дисперсионной средой (уравнение Дюпре) или благодаря адсорбции стабилизаторов (адсорбционное уравнение Гиббса);
энтропийный фактор проявляется в стремлении дисперсной фазы к равномерному распределению по объему системы за счет теплового движения. Он является дополнительным к двум первым факторам и действует в высокодисперсных системах, частицы дисперсной фазы которых участвуют в броуновском движении.
Кинетические факторы устойчивости (стабилизации) снижают скорость столкновения частиц, влияя в основном на гидродинамические свойства систем:
1) структурно-механический связан с образованием на поверхности частиц защитных слоев (пленок), обладающих упругостью, механической прочностью и стойкостью к разрушению (на разрушение таких защитных слоев требуются энергия и время);
2) гидродинамический - снижение скорости движения и соответственно скорости агрегации вследствие изменения вязкости среды, плотности дисперсной фазы и дисперсионной среды.
В реальных системах агрегативная устойчивость обычно обусловливается одновременным действием нескольких факторов. При этом основную роль играют два фактора: электростатический барьер, создаваемый силами отталкивания, и адсорбционно-сольватный барьер, окружающий частицу и механически препятствующий ее сближению с другими частицами.
Коагуляция коллоидных растворов
Укрупнение частиц дисперсной фазы при потере агрегативной устойчивости достигается в результате изотермической перегонки (растворение мелких и рост крупных частиц в соответствии с уравнением Кельвина) или за счет слипания (слияния) частиц –коагуляции. Наиболее распространен последний процесс.
Коагуляцию могут вызвать различные факторы: механические воздействия (интенсивное встряхивание, перемешивание, перекачивание по трубам), воздействие ультразвука и электрического поля, действие света и различного рода излучений, изменение температуры (сильное нагревание или охлаждение вплоть до замораживания), сильное разбавление или концентрирование (изменение состава дисперсионной среды и др.). Однако наиболее важную роль в коагуляции играют электролиты. При добавлении к коллоидным растворам они чрезвычайно быстро и резко влияют на толщину двойного электрического слоя и потенциал, являющийся одним из главных факторов устойчивости гидрофобных коллоидов.
Для начала явной коагуляции в присутствии электролита необходимо, чтобы его концентрация превысила некоторую минимальную (критическую) величину – порог коагуляции ( или Ск).
Величину, обратную порогу коагуляции, называют коагулирующей способностьюи обозначают Vк(Vк= 1/Ск). Последняя выражает число объемов золя, скоагулированного одним молем иона-коагулятора.
Следует иметь в виду, что величина порога коагуляции зависит от ряда условий: момента его фиксирования после внесения электролита, метода наблюдения, концентрации исследуемого золя и др., которые необходимо указывать
Коагулирующей частью электролита является тот ион, который несет заряд, противоположный по знаку заряду коллоидной частицы, т.е. для положительных золей коагуляторами являются анионы, а для отрицательных – катионы. Коагулирующая способность электролита сильно возрастает с валентностью иона-коагулятора: ионы высшей валентности имеют порог коагуляции значительно меньше, чем ионы меньшей валентности. Все эти закономерности, найденные Шульце и Гарди и подтвержденные многочисленными исследователями, известны как правило Щульце-Гарди.