
- •Глава 1
- •1.1. Принципы системного подхода в моделировании
- •1.2. Общая характеристика проблемы
- •1.3. Классификация видов моделирования
- •1.4. Возможности и эффективность моделирования
- •Глава 2
- •2.1. Основные подходы к построению
- •2.2. Непрерывно-детерминированные модели
- •2.3. Дискретно-детерминированные модели
- •2.4. Дискретно-стохасгичеосие модели
- •2.5. Непрерывно-стохастические модели
- •2.6. Сетевые модели (n-схемы)
- •2.7. Комбинированные модели (a-схемы)
- •Глава 3
- •3.1. Методика разработки и машинной
- •3.2. Построение концептуальных моделей систем и их формализация
- •3.3. Алгоритмизация моделей систем и их машинная
- •2.7. Верификация и проверка достоверности схемы программы.
- •3.4. Получение и интерпретация результатов
- •Глава 4
- •4.1. Общая характеристика метода статистического моделирования
- •4.2. Псевдослучайные последовательности и процедуры
- •4.3. Проверка и улучшение качества последовательностей псевдослучайных чисел
- •4.4. Моделирование случайных воздействий
- •Глава 5
- •5.1. Основы систематизации языков имитационного моделирования
- •5.2. Сравнительный анализ языков
- •5.3. Пакеты прикладных программ моделирования
- •5.4. Базы данных моделирования
- •5 .5. Гибридные моделирующие комплексы
- •Глава 6
- •6.1. Методы теории планирования
- •6.2. Стратегическое планированиемашинных
- •6.3. Тактическое планирование машинных экспериментов
- •Глава 7
- •7.1. Особенности фиксации и статистической обработки результатов моделирования систем на эвм
- •7.2. Анализ и интерпретация результатов
- •7.3. Обработка результатов машинного
- •Глава 8
- •8.1. Иерархические модели процессов
- •8.2. Моделирование процессов
- •8.3. Моделирование процессов функционирования систем
- •8.4. Моделирование процессов
- •Глава 9
- •9.1. Гносеологические и информационные
- •9.2. Модели в адаптивных системах управления
- •9.3. Моделирование в системах управления
- •Глава 10
- •10.1. Общие правила построения и способы
- •10.2. Моделирование при разработке распределенных автоматизированных систем и информационных сетей
- •10.3. Моделирование при разработке организационных и производственных систем
Советов Б.Я., Яковлев С.А. Моделирование систем
М.: Высшая школа, 2009, - 343 с.
Может быть полезен специалистам в области моделирования сложных информационных систем. Представлена новая скорректированная методика имитационного моделирования сложных систем, рассмотрена интеллектуальная система моделирования, а также скорректирован и расширен математический аппарат. Для студентов ВУЗов, обучающихся по направлениям "Информатика и вычислительная техника" и "Информационные системы". Даны фундаментальные основы теории моделирования, приведены определения основных понятий компьютерной имитации, рассмотрены подходы к моделированию процессов и явлений в природе и обществе, особое внимание уделено математическому аппарату формализации процессов в сложных системах, методически последовательно показан переход от концептуальных моделей систем к формальным, приводится методология статистического моделирования систем, обсуждаются проблемы интерпретации полученных с помощью компьютерной модели результатов применительно к объекту моделирования, т. е. исследуемой системе.
Оглавление
Предисловие
Введение. Современное состояние проблемы моделирования систем
B.1. Моделирование как метод научного дознания
B.2. Использование моделирования при исследовании и проектировании сложных систем
B.3. Перспективы развития методов и средств моделирования систем в свете новых информационных технологий
Глава 1. Основные понятая теория моделирования систем
1.1. Принципы системного подхода в моделировании систем
1.2. Общая характеристика проблемы моделирования систем
1.3. Классификация видов моделирования систем.
1.4. Возможности и эффективность моделирования систем на вычислительных машинах.
Глава 2. Математические схемы моделирования систем
2.1. Основные подходы к построению математических моделей систем
2.2. Непрерывно-детерминированные модели (D-схемы)
2.3. Дискретно-детерминированные модели (F-схемы)
2.4. Дискретно-стохастические модели (Р-схемы)
2.5. Непрерывно-стохастические модели (Q-схемы)
2.6. Сетевые модели (N-схемы)
2.7. Комбинированные модели (А-схемы)
Глава 3. Формализация и алгоритмизация процессов функционирования систем
3.1. Методика разработки и машинной реализации моделей систем
3.2. Построение концептуальных моделей систем и их формализация
3.3. Алгоритмизация моделей систем и их машинная реализация
3.4. Получение и интерпретация результатов моделирования систем
Глава 4. Статистическое моделирование систем на ЭВМ
4.1. Общая характеристика метода статистического моделирования
4.2. Псевдослучайные последовательности и процедуры их машинной генерации
4.3. Проверка и улучшение качества последовательностей псевдослучайных чисел
4.4. Моделирование случайных воздействий на системы
Глава 5. Инструментальные средства моделирования систем
5.1. Основы систематизации языков имитационного моделирования
5.2. Сравнительный анализ языков имитационного моделирования
5.3. Пакеты прикладных программ моделирования систем
5.4. Базы данных моделирования
5.5. Гибридные моделирующие комплексы
Глава 6. Планирование машинных экспериментов с моделями систем
6.1. Методы теории планирования экспериментов
6.2. Стратегическое планирование машинных экспериментов с моделями систем
6.3. Тактическое планирование машинных экспериментов с моделями систем
Глава 7. Обработка анализ результатов моделирования систем
7.1. Особенности фиксации и статистической обработки результатов моделирования систем на ЭВМ
7.2. Анализ и интерпретация результатов машинного моделирования .
7.3. Обработка результатов машинного эксперимента при синтезе систем
Глава 8. Моделирование систем с использованием типовых математических схем
8.1. Иерархические модели процессов функционирования
8.2. Моделирование процессов функционирования систем на базе Q-схем
8.3. Моделирование процессов функционирования систем на базе N-схем
8.4. Моделирование процессов функционирования систем на базе А-схем
Глава 9. Моделирование для принятая решений при управлении
9.1. Гносеологические и информационные модели при управлении
9.2. Модели в адаптивных системах управления
9.3. Моделирование в системах управления в реальном масштабе времени
Глава 10. Использование метода моделирования при разработке автоматизированных систем
10.1. Общие правила построения и способы реализации моделей систем
10.2. Моделирование при разработке распределенных автоматизированных систем н информационных сетей
10.3. Моделирование при разработке организационных н производственных систем
Заключение. Перспективы использования компьютерного моделирования в информационном обществе
ПРЕДИСЛОВИЕ
Современный этап развития человечества отличается тем, что на; смену века энергетики приходит век информатики. Происходит интенсивное внедрение новых информационных технологий во все сферы человеческой деятельности. Встает реальная проблема перехода в информационное общество, для которого приоритетным должно стать развитие образования. Изменяется и структура знаний в обществе. Все большее значение для практической жизни приобретают фундаментальные знания, способствующие творческому развитию личности. Важна и конструктивность приобретаемых знаний, умение их структурировать в соответствии с поставленной целью. На базе знаний формируются новые информационные ресурсы общества. Формирование и получение новых знаний должно базироваться на строгой методологии системного подхода, в рамках которого особое место занимает модельный подход. Возможности модельного подхода крайне многообразны как по используемым формальным моделям, так и по способам реализации методов моделирования. Физическое моделирование позволяет получить достоверные результаты для достаточно простых систем.
Сложные по внутренним связям и большие по количеству элементов системы экономически трудно поддаются прямым способам моделирования и зачастую для построения и изучения переходят к имитационным методам. Появление новейших информационных технологий увеличивает не только возможности моделирующих систем, но и позволяет применять большее многообразие моделей способов их реализации. Совершенствование вычислительной; и телекоммуникационной техники привело к дальнейшему развитию методов машинного моделирования, без которых невозможно изучение процессов и явлений, а также построение больших и сложных систем. Поэтому дисциплина «Моделирование систем» сталан базовой в структуре подготовки бакалавров и специалистов по ряду направлений высшего профессионального образования. Среди этих направлений, прежде всего, следует отметить 654600 — «Информатика и вычислительная техника», 654700 — «Информационные системы», а также ряд специальностей, среди которых 654602 — «Автоматизированные системы обработки информации и управления» (АСОИУ), 654701 — «Информационные системы в технике и технологиях» (ИС) и др.
Материал предлагаемого учебника является третьим, дополненным и переработанным изданием и соответствует программам дисциплины «Моделирование систем» учебного плана подготовки инженеров по специальностям 654602 — АСОИУ и 654701 — ИС. При подготовке третьего издания использована новая отечественная и зарубежная литература по моделированию систем различных классов, опыт разработки реальных систем, а также результаты использования ранее выпущенных учебников «Моделирование систем» в учебном процессе на кафедре Автоматизированных систем обработки информации и управления Санкт-Петербургского государственного электротехнического университета ЛЭТИ.
Автору благодарны д.т.н., профессору О. С. Чугрееву за ценные замечания, сделанные при рецензировании рукописи.
Пожелания по содержанию книги просим направлять по адресу: 127994, Москва, ГСП-4, Неглинная ул., 29/14, издательство «Высшая школа».
Авторы
ВВЕДЕНИЕ
СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ МОДЕЛИРОВАНИЯ
СИСТЕМ
Моделирование (в широком смысле) является основным методом исследований во всех областях знаний и научно обоснованным методом оценок характеристик сложных систем, используемым для принятия решений в различных сферах инженерной деятельности. Существующие и проектируемые системы можно эффективно исследовать с помощью математических моделей (аналитических и имитационных), реализуемых на современных ЭВМ, которые в этом случае выступают в качестве инструмента экспериментатора с моделью системы.
В.1. МОДЕЛИРОВАНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ
В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации. Остановимся на философских аспектах моделирования, а точнее общей теории моделирования [35, 37, 43].
Методологическая основа моделирования. Все то, на что направлена человеческая деятельность, называется объектом (лат. objection — предмет). Выработка методологии направлена на упорядочение получения и обработки информации об объектах, которые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.
В научных исследованиях большую роль играют гипотезы, т. е. определенные предсказания, основывающиеся на небольшом количестве опытных данных, наблюдений, догадок. Быстрая и полная проверка выдвигаемых гипотез может быть проведена в ходе специально поставленного эксперимента. При формулировании и проверке правильности гипотез большое значение в качестве метода суждения имеет аналогия.
Аналогией называют суждение о каком-либо частном сходстве. Двух объектов, причем такое сходство может быть существенным и несущественным. Необходимо отметить, что понятия существенности и несущественности сходства или различия объектов условны и относительны. Существенность сходства (различия) зависит от уровня абстрагирования и в общем случае определяется конечной целью проводимого исследования. Современная научная гипотеза создается, как правило, по аналогии с проверенными на практике научными положениями. Таким образом, аналогия связывает гипотезу с экспериментом.
Гипотезы и аналогии, отражающие реальный, объективно существующий мир, должны обладать наглядностью или сводиться к удобным для исследования логическим схемам; такие логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явлений, называются моделями. Другими словами, модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.
Определение моделирования. Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием. Таким образом, моделирование может быть определено как пейредставление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью. Теория замещения одних объектов (оригиналов) другими объектами (моделями) и исследования свойств объектов на их моделях называется теорией моделирования [5, 36, 46].
Определяя гносеологическую роль теории моделирования, т. е. ее значение в процессе познания, необходимо, прежде всего, отвлечься от имеющегося в науке и технике многообразия моделей и выделить то общее, что присуще моделям различных по своей природе объектов реального мира. Это общее заключается в наличии некоторой структуры (статической или динамической, материальной или мысленной), которая подобна структуре данного объекта. В процессе изучения модель выступает в роли относительного самостоятельного квазиобъекта, позволяющего получить при исследовании некоторые знания о самом объекте.
Если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то говорят, что модель адекватна объекту. При этом адекватность модели зависит от цели моделирования и принятых критериев.
Обобщенно моделирование можно определить как метод опосредованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:
1) моделирование как познавательный процесс, содержащий переработку информации, поступающей из внешней среды, о происходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам;
2) моделирование, заключающееся в построении некоторой системы-модели (второй системы), связанной определенными соотношениями подобия с системой-оригиналом (первой системой), причем в этом случае отображение одной системы в другую является средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосредственного изучения поступающей информации.
Следует отметить, что с точки зрения философии моделирование — эффективное средство познания природы. Процесс моделирования предполагает наличие объекта исследования; исследователя, перед которым поставлена конкретная задача; модели, создаваемой для получения информации об объекте и необходимой для решения поставленной задачи. Причем по отношению к модели исследователь является, по сути дела, экспериментатором, только в данном случае эксперимент проводится не с реальным объектом, а с его моделью. Такой эксперимент для инженера есть инструмент непосредственного решения организационно-технических задач.
Надо иметь в виду, что любой эксперимент может иметь существенное значение в конкретной области науки только при специальной его обработке и обобщении. Единичный эксперимент никогда не может быть решающим для подтверждения гипотезы, проверки теории. Поэтому инженеры (исследователи и практики) должны быть знакомы с элементами современной методологии теории познания и, в частности, не должны забывать основного положения материалистической философии, что именно экспериментальное исследование, опыт, практика являются критерием истины.
В.2. ИСПОЛЬЗОВАНИЕ МОДЕЛИРОВАНИЯ
ПРИ ИССЛЕДОВАНИИ И ПРОЕКТИРОВАНИИ
СЛОЖНЫХ СИСТЕМ
Одна из проблем современной науки и техники — разработка и внедрение в практику проектирования новейших методов исследования характеристик сложных информационно-управляющих и информационно-вычислительных систем различных уровней (например, автоматизированных систем научных исследований и комплексных испытаний, систем автоматизации проектирования, АСУ технологическими процессами, а также интегрированных АСУ, вычислительных систем, комплексов и сетей, информационное систем, цифровых сетей интегрального обслуживания и т. Д). При проектировании сложных систем и их подсистем возникают Многочисленные задачи, требующие оценки количественных и качественных закономерностей процессов функционирования такихсистем, проведения структурного алгоритмического и параметрического их синтеза [4,11, 37, 45].
Особенности разработки систем. Рассматриваемые в данном учебнике системы информатики и вычислительной техники, автоматизированные системы обработки информации и управления, информационные системы относятся к классу больших систем, этапы проектирования, внедрения, эксплуатации и эволюции которых в настоящее время невозможны без использования различных видов моделирования. На всех перечисленных этапах для сложных видов различных уровней необходимо учитывать следующие особенности: сложность структуры и стохастичность связей между элементами, неоднозначность алгоритмов поведения при различных условиях, большое количество параметров и переменных, неполноту и недетерминированность исходной информации, разнообразие и вероятностный характер воздействий внешней среды и т. д. Ограниченность возможностей экспериментального исследования больших систем делает актуальной разработку методики их моделирования, которая позволила бы в соответствующей форме представить процессы функционирования систем, описание протекания этих процессов с помощью математических моделей, получение результатов экспериментов с моделями по оценке характеристики исследуемых объектов. Причем на разных этапах создания и использования перечисленных систем для всего многообразия входящих, в них подсистем применив метода моделирования преследует конкретные цели, а эффективность метода зависит от того, насколько грамотно разработчик использует возможности моделирования [34].
Независимо от разбиения конкретной сложной системы на подсистемы при проектировании каждой из них необходимо выполнить внешнее проектирование (макропроектирование) и внутреннее проектирование (микропроектирование). Так как на этих стадиях разработчик преследует различные цели, то и используемые при этом методы и средства моделирования могут существенно отличаться.
На стадии макропроектирования должна быть разработана обобщенная модель процесса функционирования сложной системы, позволяющая разработчику получить ответы на вопросы об эффективности различных стратегий управления объектом при его взаимодействии с внешней средой. Стадию внешнего проектирования можно разбить на анализ и синтез. При анализе изучают объект управления, строят модель воздействий внешней среды, определяют критерии оценки эффективности, имеющиеся ресурсы, необходимые ограничения. Конечная цель стадии анализа — построение модели объекта управления для оценки его характеристик. При синтезе на этапе внешнего проектирования решаются задачи выбора стратегии управления на основе модели объекта моделирования, т. е. сложной системы.
На стадии микропроектирования разрабатывают модели с целью создания эффективных подсистем. Причем используемые методы и средства моделирования зависят от того, какие конкретно обсспенивающие подсистемы разрабатываются: информационные, математические, технические, программные и т. д.
Особенное использования моделей. Выбор метода моделировая и необходимая детализация моделей существенно зависят от этапа разработки сложной системы [34, 37, 46]. На этапах обследования объекта управления, например промышленного предприятия, я разработки технического задания на проектирование автоматизированной системы управления модели в основном носят описательный характер и преследуют цель наиболее полно представить в компактной форме информацию об объекте, необходимую разработчику системы.
На этапах разработки технического и рабочего проектов систем, модели отдельных подсистем детализируются, и моделирование служит для решения конкретных задач проектирования, т. е. выбора оптимального по определенному критерию при заданных ограничениях варианта из множества допустимых. Поэтому в основном на этих этапах проектирования сложных систем используются модели для целей синтеза [10, 18, 37].
Целевое назначение моделирования на этапе внедрения и эксплуатации сложных систем — это проигрывание возможных ситуаций для принятия обоснованных и перспективных решений по управлению объектом. Моделирование (имитацию) также широко применяют при обучении и тренировке персонала автоматизированных систем управления, вычислительных комплексов и сетей, информационных систем в различных сферах. В этом случае моделирование носит характер деловых игр. Модель, реализуемая обычно на ЭВМ, воспроизводит поведение управляемого объекта и внешней среды, а люди в определенные моменты времени принимают решения по управлению объектом.
АСОИУ являются системами, которые развиваются по мере эволюции объекта управления, появления новых средств управления и т.-д. Поэтому при прогнозировании развития сложных систем роль моделирования очень высока, так как это единственная возможность ответить на многочисленные вопросы о путях дальнейшего эффективного развития системы и выбора из них наиболее оптимального.
В.З. ПЕРСПЕКТИВЫ РАЗВИТИЯ МЕТОДОВ
И СРЕДСТВ МОДЕЛИРОВАНИЯ СИСТЕМ
В СВЕТЕ НОВЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
В последние годы основные достижения в различных областях науки и техники неразрывно связаны с процессом совершенствования ЭВМ. Сфера эксплуатации ЭВМ — бурно развивающаясяотрасль человеческой практики, стимулирующая развитие новых теоретических и прикладных направлений [35]. Ресурсы современной информационно-вычислительной техники дают возможность ставить и решать математические задачи такой сложности, которые в недавнем прошлом казались нереализуемыми, например моделирование больших систем.
Аналитические и имитационные методы. Исторически первым сложился аналитический подход к исследованию систем, когда ЭВМ использовалась в качестве вычислителя по аналитическим зависимостям. Анализ характеристик процессов функционирования больших систем с помощью только аналитических методов исследования наталкивается обычно на значительные трудности, приводящие к необходимости существенного упрощения моделей либо на этапе их построения, либо в процессе работы с моделью, что может привести к получению недостоверных результатов.
Поэтому в настоящее время наряду с построением аналитических моделей большое внимание уделяется задачам оценки характеристик больших систем на основе имитационных моделей, реализованных на современных ЭВМ с высоким быстродействием и большим объемом оперативной памяти. Причем перспективность имитационного моделирования как метода исследования характеристик процесса функционирования больших систем возрастает с повышением быстродействия и оперативной памяти ЭВМ, с развитием математического обеспечения, совершенствованием банков данных и периферийных устройств для организации диалоговых систем моделирования. Это, в свою очередь, способствует появлению новых «чисто машинных» методов решения задач исследования больших систем на основе организации имитационных экспериментов с их моделями. Причем ориентация на автоматизированные рабочие места на базе персональных ЭВМ для реализации экспериментов с имитационными моделями больших систем позволяет проводить не только анализ их характеристик, но и решать задачи структурного, алгоритмического и параметрического синтеза таких систем при заданных критериях оценки эффективности и ограничениях [4, 9, 18, 23].
Достигнутые успехи в использовании средств вычислительной техники для целей моделирования часто создают иллюзию, что применение современной ЭВМ гарантирует возможность исследования системы любой сложности. При этом игнорируется тот факт, что в основу любой модели положено трудоемкое по затратам времени и материальных ресурсов предварительное изучение явлений, имеющих место в объекте-оригинале. И от того, насколько детально изучены реальные явления, насколько правильно проведена их формализация и алгоритмизация, зависит в конечном итоге успех моделирования конкретного объекта.
Средства моделирования систем. Расширение возможностей моделирования различных классов больших систем неразрывно связано с совершенствованием средств вычислительной техники и техники связи. Перспективным направлением является создание для клей моделирования иерархических многомашинных вычислительных систем и сетей [2, 7, 12, 25, 41].
При создании больших систем их компоненты разрабатываются различными коллективами, которые используют средства моделирования при анализе и синтезе отдельных подсистем. При этом разработчикам необходимы оперативный доступ к программно-техническим средствам моделирования, а также оперативный обмен результатами моделирования отдельных взаимодействующих подсистем. Таким образом, появляется необходимость в создании диалоговых систем моделирования, для которых характерны следующие особенности: возможность одновременной работы многих пользователей, занятых разработкой одной или нескольких систем, доступ пользователей к программно-техническим ресурсам системы моделирования, включая, базы данных и знаний, пакеты прикладных программ моделирования, обеспечение диалогового режима работы с различными вычислительными машинами и устройствами, включая цифровые и аналоговые вычислительные машины, установки натурного и физического моделирования, элементы реальных систем и т. п., диспетчирование работ в системе моделирования и оказание различных услуг пользователям, включая обучение работе с диалоговой системой моделирования при обеспечении дружественного интерфейса,
В зависимости от специфики исследуемых объектов в ряде случаев эффективным оказывается моделирование на аналоговых вычислительных машинах (АВМ). При этом надо иметь в виду, что АВМ значительно уступают ЭВМ по точности и логическим возможностям, но по быстродействию, схемной простоте реализации, сопрягаемости с датчиками внешней информации АВМ превосходят ЭВМ или, по крайней мере, не уступают им.
Для сложных динамических объектов перспективным является моделирование на базе гибридных (аналого-цифровых) вычислительных комплексов. Такие комплексы реализуют преимущества цифрового и аналогового моделирования и позволяют наиболее эффективно использовать ресурсы ЭВМ и АВМ в составе единого комплекса. При использовании гибридных моделирующих комплексов упрощаются вопросы взаимодействия с датчиками, установленными на реальных объектах, что позволяет, в свою очередь, проводить комбинированное моделирование с использованием аналого-цифровой части модели и натурной части объекта [11, 19]. Такие гибридные моделирующие комплексы могут входить в состав многомашинного вычислительного комплекса, что еще больше расширяет его возможности с точки зрения моделируемых классов больших систем.
Информационные технологии в обществе XXI века. Конец XX столетия ознаменовался интенсивным развитием и внедрением во все сферы жизни общества информатики. Это проявилось в интенсивном совершенствовании средств вычислительной техники и техники связи, в появлении новых и в дальнейшем развитии существующих информационных технологий, а также в реализации прикладных информационных систем. Достижения информатики заняли достойное место в организационном управлении, в промышленности, в проведении научных исследований и в автоматизированном проектировании. Информатизация охватила и социальную сферу: образование, науку, культуру, здравоохранение.
Переход страны к рыночной экономике потребовал развития соответствующего информационного обеспечения. Постепенно в России формировался рынок, в котором информация начинала выступать как ресурс, имеющий коммерческий характер. Наряду с производством систем и средств информатики большое место в настоящее время занимают и информационные услуги, на базе самоокупаемости интенсивно развивается отрасль связи. Телефония, радиовещание, телевидение работают с использованием различных типов каналов связи. Компьютерная техника прочно вошла в быт и используется как в образовании, так и в воспитании подрастающего поколения.
Домашний компьютер стал естественным для многих семей. В образовании значительная доля нагрузки в учебном процессе переносится на самостоятельные задания, выполняемые на домашнем компьютере. По своему качеству домашний компьютер в настоящее время часто оказывается намного выше компьютера, используемого в школе или в ВУЗе. Характерно, что в последние годы, покупая домашний компьютер, пользователь начал обращать внимание на место сборки, конфигурацию и перспективные возможности техники. Приобретается и значительное количество программных средств, в том числе записанных на CD-ROM, огромное число абонентов подключается к Интернет, значительное число пользователей работает с использованием сотовой и других сетей. Все это подтверждает, что процесс информатизации интенсифицируется, завершается этап неуправляемой информатизации. Управляемая составляющая, которая реализовывалась в основном в образовании, в промышленности и в административном управлении оказалась явно недостаточной из-за малых финансовых средств, но в целом современный уровень информатизации позволяет констатировать, что начало следующего века, станет точкой перехода из века энергетики в век информатики, как это прогнозировал Норберт Винер [8, 35].
Информатизация как процесс перехода от индустриального общества к информационному характеризуется резким перераспределением трудовых ресурсов в материальное производство и в сферу информации. Это соотношение изменяется от 3:1 к 1:3. В ряде стран суммарные расходы на компьютерную технику, телекоммуникации, электронику превысили расходы на энергетику, а поэтому, рассматривая проблему перспектив развития образования, нам необходимо исходить из будущего, поскольку только логически разработанная картина будущего может помочь познать настоящее. Проблема становления информационного общества и составляющая ее проблема информатизации образования должна рассматриваться в тесной взаимосвязи с проблемой будущего устойчивого развития цивилизации
Модель образовательной системы должна быть сформирована с учетом адаптации образования к модели устойчивого развития цивилизации, а отсюда вытекает проблема опережающего развития образовательной системы, которая должна удовлетворять потребностям будущего информационного общества.
Для информационного общества характерно полное удовлетворение информационных потребностей населения при завершении формирования единой информационной среды, определяющей новую культуру как общества в целом, так и каждого человека в отдельности. Информационная культура как составляющая и базис информационного общества должна закладываться уже в настоящее время. Переход от консервативной образовательной системы к опережающей мог бы базироваться на опережающем формировании информационного пространства Российского образования. Только образование может служить фундаментом новой информационной культуры.
Информационная культура, конечно, не ограничивается системой знаний в области информационных процессов, технологий и должна включать активно преобразовательный аспект отношения к миру. По сути информационная культура может рассматриваться как свод правил поведения в информационном обществе, в коммуникационной среде, в человеко-машинных системах, вписывающихся в мировую гуманистическую культуру человечества. Уже в настоящее время вхождение пользователя в мировую сеть позволяет получить огромные объемы информации, которая может быть предназначена и для идеологической обработки.
Необходимо воспитывать корректное отношение к получаемой информации. Информационное пространство Российского образования должно отвечать национальным интересам и базироваться на традициях отечественной культуры. Повсеместное использование зарубежной компьютерной техники сопровождается планомерным информационным идеологическим воздействием на пользователей. Можно пойти по пути защиты от чуждой нам информации, создавая соответствующие методы и средства, но особое внимание нужно обратить на информационную культуру педагога, воспитателя, учителя школы и преподавателя ВУЗа.
Уровень информационной подготовки учителя нередко отстает от уровня ученика, работающего на домашнем компьютере, подключенном к сети. Проблема развития интеллекта учащихся не может быть решена только средствами информатики, но проблема развития науки об образовании должна разрешаться с учетом перехода в информационное общество, в котором будет сформирована инфоноосфера личности, а поэтому развитие интеллектуальных способностей личности даже в настоящее время тесно смыкается с проблемой информатизации образования. Возможности информатизации образования определяются современными достижениями информатики и методологией их использования в образовании.
Можно выделить три уровня информатики:
— физический — программно-аппаратные средства вычислительной техники и техники связи;
— логический — информационные технологии;
— прикладной — пользовательские информационные системы. Для физического уровня характерно, что компьютерная техника
и техника связи практически вся разработана за рубежом и в лучшем случае наблюдается лишь ее сборка на отечественном производстве.
Информатизация города, региона, области базируется на создании единой телекоммуникационной среды. Отличительными особенностями перспективных сетей являются интеграция услуг, предоставляемых пользователю, цифровизация, комплексное использование проводных, радио - и космических каналов связи, переход к цифровым сетям интегрального обслуживания [35]. Использование волоконно-оптических линий и сетей кабельного телевидения позволяет на одной и той же базе обеспечить передачу речи, видеосигнала, данных, служебной информации и тем самым обеспечить вхождение каждого пользователя как в Российское, так и в мировое информационное пространство.
Происходит формирование единой информационной среды на основе объединения банков данных и баз знаний, проектируются конкретные информационные системы в различных областях человеческой деятельности. Совершенствование технической базы сопровождается продвижением современных операционных систем в пользовательскую среду, развиваются открытые системы.
Модели базовых информационных технологий в образовании. Для логического уровня информатики характерно совершенствование существующих, создание и развитие новых информационных технологий. Получили развитие как теория, так и практика информационных технологий [1, 8, 35]. Развивается методология, совершенствуются средства информационных технологий. Уже в настоящее время могут быть выделены базовые информационные процессы и информационные технологии.
В рамках базовых технологий получают развитие конкретные технологии, решающие задачи в выбранных предметных областях. Переход к информационному обществу заставляет задуматься о готовности выпускников учебных заведений к жизни и к труду в обществе XXI века. Учитывая, что уже в настоящее время скорости преобразования технологий производства стали опережать темпы смены поколений, оказывается необходимым не только совершенствование и дополнительная подготовка, но и неоднократное освоение новых видов деятельности в течение трудовой жизни.
Поэтому в информационном обществе встает проблема обучения, и непрерывное образование становится составной частью жизни каждого человека. В этих условиях информатизация означает изменение всей образовательной системы с ее ориентацией на новую информационную культуру. Освоение новой информационной культуры может в значительной степени реализовываться за счет внедрения в учебный процесс, управление образованием и в повседневную жизнь перспективных информационных технологий.
Прежде всего, следует обратить особое внимание на проблему обеспечения сферы образования теорией и методикой, как разработки, так и эффективного применения новых средств информационных технологий. Теория информационных технологий должна определить модели базовых информационных процессов, связанных с получением, сбором, передачей, обработкой, хранением, накоплением и представлением информации. Особое место занимают модели формализации и представления знаний.
Весьма актуальным представляется выделение базовых информационных технологий, к которым уже в настоящее время можно отнести технологии распределенного хранения и обработки, офисные технологии, мультимедиа технологии, геоинформационные технологии, технологии защиты информации, CASE-технологии, телекоммуникационные технологии [15, 35]. На основе базовых разрабатываются прикладные информационные технологии по областям применения, позволяющие получать конкретные продукты соответствующего назначения в виде средств, систем, сред.
В рамках указанных технологий в образовании уже в настоящее время получили широкое применение:
1) компьютерные программы и обучающие системы, представляющие собой электронные учебники, учебные пособия, тренажеры, лабораторные практикумы, системы тестирования знаний и квалификации, выполненные на различных типах машинных носителей;
2) системы на базе мультимедиа-технологии, построенные с применением видеотехники, накопителей на CD-ROM и реализуемые на ПЭВМ;
3) интеллектуальные обучающие экспертные системы, которые специализируются по конкретным областям применения и имеют практическое значение как в процессе обучения, так и в учебных исследованиях;
4) информационные среды на основе баз данных и знаний, позволяющие осуществить как прямой, так и удаленный доступ к информационным ресурсам;
5) телекоммуникационные системы, реализующие электронную почту, телеконференции и т. д. и позволяющие осуществить выход в мировые коммуникационные сети;
6) электронные настольные типографии, позволяющие в индивидуальном режиме с высокой скоростью осуществить производство учебных пособий и документов на различных носителях;
7) электронные библиотеки как распределенного, так и централизованного характера, позволяющие по-новому реализовать доступ учащихся к мировым информационным ресурсам;
8) геоинформационные системы, которые базируются на технологии объединения компьютерной картографии и систем управления базами данных. В итоге удается создать многослойные электронные карты, опорный слой которых описывает базовые явления или ситуации, а каждый последующий — задает один из аспектов, процессов или явлений;
9) системы защиты информации различной ориентации (от несанкционированного доступа при хранении информации, от искажений при передаче информации, от подслушивания и т. д.).
Перспективы применения информационных технологий. Методически новые информационные технологии в образовании должны быть проработаны с ориентацией на конкретное применение. Часть технологий может поддерживать учебный процесс (лекционные и практические занятия), другие технологии способны эффективно поддержать разработку новых учебников и учебных пособий. Информационные технологии помогут также эффективно организовать проведение экспериментально-исследовательских работ, как в школе, так и в ВУЗе. Особую значимость информационные технологии приобретают при самостоятельной работе учащихся на домашнем компьютере с использованием современных методов моделирования.
Какие же новые возможности открываются при внедрении современных информационных технологий в образование? На основе мультимедиа технологии появляется возможность создавать учебники, учебные пособия и другие методические материалы на машинном носителе, которые могут быть разделены на некоторые группы:
1. Учебники, представляющие собой текстовое изложение материала с большим количеством иллюстраций, которые могут быть установлены на сервире и переданы через сеть на домашний компьютер. При ограниченном количестве материала такой учебник может быть реализован в прямом доступе пользователя к серверу.
2. Учебники с высокой динамикой иллюстративного материала, выполненные на CD-ROM. Наряду с основным материалом они содержат средства интерактивного доступа, средства анимации и мультипликации, а также видеоизображения, в динамике демонстрирующие принципы и способы реализации отдельных процессовявлений.
Такие учебники могут иметь не только образовательное, но и художественное назначение. Огромный объем памяти носителя информации позволяет реализовывать на одном оптическом диске
энциклопедию, справочник, путеводитель и т. д.
3. Современные компьютерные обучающие системы для проведения учебно-исследовательских работ. Они реализовывают моделирование, как процессов, так и явлений, т. е. создают новую учебную компьютерную среду, в которой обучаемый является активным, и может сам вести учебный процесс.
4. Системы виртуальной реальности, в которых учащийся становятся участником компьютерной модели, отображающей окружающий мир. Для грамотного использования мультимедиа продуктов этого типа крайне важно изучение их психологических особенностей и негативных воздействий на обучаемого.
5. Системы дистанционного обучения. В сложных социально-экономических условиях дистанционное образование становится особенно актуальным для отдаленных регионов, для людей с малой подвижностью, а также при самообразовании и самостоятельной работе учащихся. Эффективная реализация дистанционного обучения возможна лишь при целенаправленной программе создания высококачественных мультимедиа продуктов учебного назначения по фундаментальным, естественнонаучным, общепрофессиональным и специальным дисциплинам.
К сожалению, это требует значительных финансовых средств и пока не окупается на коммерческой основе, необходимы существенные бюджетные ассигнования в эту область. Реализация такой программы позволит по-новому организовать учебных процесс, увеличив нагрузку на самостоятельную работу обучаемого.
Формирование новой информационной культуры должно базироваться, прежде всего на определенном уровне обучения в школе, а поэтому особое внимание следует уделить содержанию программы базового курса информатики, который, с одной стороны, должен быть согласован по содержанию с последующим обучением в ВУЗе, а с другой, должен поддерживать и остальные предметы школьного образования. В курс информатики уже в настоящее время закладываются сведения по моделирования процессов и явлений, по методологии формирования информационных моделей окружающего мира. У учащихся должна возникать в процессе познания информационная картина мира. Это невозможно без формирования информационной культуры населения. В основу создания информационной культуры нового общества должна быть положена идея компьютерной поддержки каждого изучаемого предмета, нельзя подменить это изучением единственного курса информатики.
Весьма важным является принцип непрерывности информационной подготовки учащихся, который должен соблюдаться как на стадии школьного, так и при переходе от школьного к Вузовскому уровню. В структуре Вузовского образования информатика является фундаментальной дисциплиной. Наряду с информатикой в учебном плане специальностей может предусматриваться ряд курсов информационной подготовки даже для нетехнических ВУЗов, которые должны совершенствоваться, чтобы компьютер стал естественным орудием труда в любой предметной области деятельности выпускника ВУЗа. К информационной подготовке можно отнести обучение методологии и средствам моделирования. Создание oпeрежающей информационной среды непрерывного Российского образования требует и решения ряда методических и организационных проблем, в том числе следующие:
1. Принятие единой системы программно и аппаратно совместимых средств вычислительной техники и техники связи, используемой в непрерывном учебном процессе. Это требует сертификации используемых средств учебного назначения и реализации программы по созданию сертификационных центров и эффективному их использованию.
2. Подключение образовательных организаций к единой цифровой сети в последующим выходом в Интернет. Решение этой задачи в значительной степени реализуется в настоящее время в высшем образовании и сдерживается в школьном образовании по финансовым причинам, а также и по сложностям выполнения для отдаленных районов.
3. Формирование единой информационной среды непрерывного образования с созданием баз данных по направлениям и специальностям подготовки, которые бы включали в себя методические документы, энциклопедии, справочники, учебники и учебные пособия, а также дополнительные средства, поддерживающие учебный процесс. Актуальным является представление в международной сети наших достижений и возможностей. Необходима организация обмена информационными ресурсами Российской образовательной системы с международной.
4. Необходимо совершенствование инструментальных средств непрерывного образования, ориентированных на ускоренное освоение материала и приобретение устойчивых навыков обучаемых, а также преследующих цели индивидуального обучения. Сюда можно отнести перспективные программные оболочки по разработке компьютерных учебников и методических материалов, программные и аппаратные средства создания компьютерных обучающих систем, средства технологии разработки мультимедиа продуктов, геоинформационных систем и т. д.
5. Необходима организация инфраструктуры информатизации образования как составной части информатизации общества в целом. Эта структура должна обеспечить создание новых, тиражирование и внедрение существующих информационных технологий в непрерывное образование.
Идеологически при инфарматизатзици образования необходимо учитывать ряд принципиальных позиций
• Эволюционное развитие сложившейся методологии образования за счет явных преимуществ новых информационных технологий, а именно, возможность наглядного, динамичного представления информатизации с использованием видеоизображений и звука, применения удаленного доступа для ознакомления с внешним и внесения собственного информационного ресурса в образовании.
• Непрерывность и преемственность компьютерного образования на всех уровнях обучения от дошкольного до послевузовского.
•Непрерывность может быть обеспечена компьютерной поддержкой всех предметов и дисциплин учебного процесса.
• Обеспечение свободы выбора методики, стиля и средств обучения с целью выявления творческих индивидуальных способностей обучаемого в сочетании с возможностью их коллективной деятельности на основе информационных технологий и телекоммуникационных систем.
• Создание научно и методически основанной системы базового образования на основе компьютерных технологий. Одним из реальных путей решения проблемы в целом является формирование и реализация региональных научно-технических программ с долевым федеральным и местным бюджетным финансированием при (дополнительном использовании внебюджетных средств. Предметом специальных исследований коллективов Высшей школы должны стать содержание, методы и средства развития образования как опережающей системы в будущем информационном обществе. При этом фундаментальное место занимают методы и средства моделирования, на основе которых можно предсказать будущее. Только при устойчивом развитии цивилизации мы можем надеяться на последовательное становление ноосферы как сферы разума. Будущее развитие человечества должно быть управляемым и в этом аспекте, несомненно, управляемым должно быть и развитие образования.
Глава 1
ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ МОДЕЛИРОВАНИЯ
СИСТЕМ
Моделирование начинается с формирования предмета исследований — системы понятий, отражающей существенные для моделирования характеристики объекта. Эта задача является достаточно сложной, что подтверждается различной интерпретацией в научно-технической литературе таких фундаментальных понятий, как система, модель, моделирование. Подобная неоднозначность не говорит об ошибочности одних и правильности других терминов, а отражает зависимость предмета исследований (моделирования) как от рассматриваемого объекта, так и от целей исследователя. Отличительной особенностью моделирования сложных систем является его многофункциональность и многообразие способов использования; оно становится неотъемлемой частью всего жизненного цикла системы. Объясняется это в первую очередь технологичностью моделей, реализованных на базе средств вычислительной техники: достаточно высокой скоростью получения результатов моделирования и их сравнительно невысокой себестоимостью.
1.1. Принципы системного подхода в моделировании
СИСТЕМ
В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или индуктивного) подхода. Последний рассматривает систему путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатываемых раздельно. В отличие от этого системный подход предполагает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.
Объект моделирования. Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством — стремлением достичь некоторой цели. Эту особенность учтем в следующих определениях системы. Система S — целенаправленное множество взаимосвязанных элементов любой природы. Внешняя среда Е — множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием .
В зависимости от цели исследования могут рассматриватьсяразные соотношения между самим объектом S и внешней средой Е.
Таким образом, в зависимости от уровня, на котором находится наблюдатель объект исследования может выделяться по-разному и могут иметь место различные взаимодействия этого объекта с внешней средой.
С развитием науки и техники сам объект непрерывно усложняется и уже сейчас говорят об объекте исследования как о некоторой сложной системе, которая состоит из различных компонент, взаимосвязанных друг с другом. Поэтому, рассматривая системный подход как основу для построения больших систем и как базу создания методики их анализа и синтеза, прежде всего необходимо определить само понятие системного подхода.
Системный подход — это элемент учения об общих законах развития природы и одно из выражений диалектического учения. Можно привести разные определения системного подхода, но наиболее правильно то, которое позволяет оценить познавательную сущность этого подхода при таком методе исследования систем, как моделирование. Поэтому весьма важны выделение самой системы S и внешней среды Е из объективно существующей реальности и описание системы исходя из общесистемных позиций.
При системном подходе к моделированию систем необходимо прежде всего четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально функционирующую систему (систему-оригинал, или первую систему), создается модель (система-модель, или вторая система) под поставленную проблему. Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет подойти к выбору критерия и оценить, какие элементы войдут в создаваемую модель М., Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.
Подходы к исследованию систем. Важным для системного подхода является определение структуры системы — совокупности связей между элементами системы, отражающих их взаимодействие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т. е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к исследованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный и функциональный.
При структурном подходе выявляются состав выделенных элементов системы S и связи между ними. Совокупность элементов связей между ними позволяет судить о структуре системы. Последняя в зависимости от цели исследования может быть описана на. разных уровнях рассмотрения. Наиболее общее описание структуры — это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.
Менее общим является функциональное описание, когда рассматриваются отдельные функции, т. е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие систему S с внешней средой Е, то свойства могут быть выражены в виде либо некоторых характеристик элементов S;W и подсистем St системы, либо системы S в целом.
При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем. Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.
Проявление функций системы во времени S(t), т. е. функционирование системы, означает переход системы из одного состояния в другое, т. е. движение в пространстве состояний Z. При эксплуатации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система S может оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.
Следует отметить, что создаваемая модель М с точки зрения системного подхода также является системой, т. е. S' = S'(M), и может рассматриваться по отношению к внешней среде Е. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системы S. Правильное понимание взаимосвязей как внутри самой модели М, так и взаимодействия ее с внешней средой Е в значительной степени определяется тем, на каком уровне находится наблюдатель.
Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классический подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели М на основе классического (индуктивного) подхода представлен на рис. 1.1, а. Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы, т. е. выбираются исходные данные Д для
моделирования и ставятся цели Ц, отображающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента К будущей модели. Совокупность компонент объединяется в модель М.
Таким образом, разработка модели М на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классический подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличительные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возникновение нового системного эффекта.
С усложнением объектов моделирования возникла необходимость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему как некоторую подсистему какой-то метасистемы, т. е. системы более высокого ранга, и вынужден перейти на позиции нового системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задачи создавать систему, являющуюся составной частью метасистемы. Например, если ставится задача проектирования АСУ предпятием, то с позиции системного подхода нельзя забывать том, что эта система является составной частью АСУ объедением.
Системный подход получил применение в системотехнике в связи с необходимостью исследования больших реальных систем, когда сказалась недостаточность, а иногда ошибочность принятая каких-либо частных решений. На возникновение системного подхода повлияли увеличивающееся количество исходных данных праазработке, необходимость учета сложных стохастических связей I в системе и воздействий внешней среды Е. Все это заставило исследователей изучать сложный объект не изолированно, а во взаимодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.
Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорциональных их значимости, на всех этапах исследования системы S и построения модели М. Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного — формулировки цели функционирования. Процесс синтеза модели М на базе системного подхода условно представлен на рис. 1.1, б. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо, исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, элементы Э и осуществляется наиболее сложный этап синтеза — выбор В составляющих системы, для чего используются специальные критерии выбора КВ.
При моделировании необходимо обеспечить максимальную эффективность модели системы. Эффективное» обычно определяется как некоторая разность между какими-то показателями ценности результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.
Стадии разработки моделей. На базе системного подхода может быть предложена и некоторая последовательность разработки моделей, когда выделяют две основные стадии проектирования: макропроектирование и микропроектирование.
На стадии макропроектирования на основе данных о pеальной системе S и внешней среде Е строится модель внешней среды, выявляются ресурсы и ограничения для построения модели системы, выбирается модель системы и критерии, позволяют оценить адекватность модели М реальной системы S. Построив модель системы и модель внешней среды, на основе критерия эффективности функционирования системы в процессе моделирования выбирают оптимальную стратегию управления, что позволяет реализовать возможности модели по воспроизведению отдельных сторон функционирования реальной системы S.
Стадия микропроектирования в значительной степени зависит от конкретного типа выбранной модели. В случае имитационной модели необходимо обеспечить создание информационного, математического,технического и программного обеспечений системного моделирования. На этой стадии можно установить основные характеристики созданной модели, оценить время работы с ней я затраты ресурсов для получения заданного качества соответствия модели процессу функционирования системы S.
Независимо от типа используемой модели М при ее построении необходимо руководствоваться рядом принципов системного подхода: 1) пропорционально-последовательное продвижение по этапам и направлениям создания модели; 2) согласование информационных, ресурсных, надежностных и других характеристик; 3) правильное соотношение отдельных уровней иерархии в системе моделирования; 4) целостность отдельных обособленных стадий построения модели.
Модель М должна отвечать заданной цели ее создания, поэтому отдельные части должны компоноваться взаимно, исходя из единой системной задачи. Цель может быть сформулирована качественно, тогда она будет обладать большей содержательностью и длительное время может отображать объективные возможности данной системы моделирования. При количественной формулировке цели возникает целевая функция, которая точно отображает наиболее существенные факторы, влияющие на достижение цели.
Построение модели относится к числу системных задач, при решении которых синтезируют решения на базе огромного числа исходных данных, на основе предложений больших коллективов специалистов. Использование системного подхода в этих условиях позволяет не только построить модель реального объекта, но и на базе этой модели выбрать необходимое количество управляющей информации в реальной системе, оценить показатели ее функционирования и тем самым на базе моделирования найти наиболее эффективный вариант построения и выгодный режим функционирования реальной системы S.