- •Оглавление
- •1. Общая характеристика задач энергоснабжения и автоматизации энергоучета
- •1.1. Назначение и задачи топливно- энергетического комплекса
- •1.2. Общая характеристика систем потребления электрической и тепловой энергии
- •1.3. Общая характеристика систем снабжения энергией и энергоносителей
- •1.4. Состояние и перспективы развития систем автоматизированного энергоучета
- •1.4.1. История развития средств автоматизации энергоучета
- •1.4.2 Состояние и цели систем автоматизированного контроля и учета (аскуэ)
- •1.5. Основные требования и направления развития аскуэ
- •1.6. Информационно-экономическое сопровождение автоматизированного энергоучета
- •2. Структурное построение, классификация и экономическая эффективность аскуэ
- •2.1. Структурное построение аскуэ
- •2.1.1. Обобщенная структурная схема аскуэ
- •2.1.2. Вырожденные структуры
- •2.2. Классификация аскуэ
- •2.3. Типовые структурные схемы, реализованные аскуэ
- •2.3.1. Специализированные и комплексные аскуэ предприятий
- •2.3.2. Аскуэ территориально распределенных объектов
- •2.3.3. Интегрированные аскуэ
- •2.4. Эффективность аскуэ
- •2.4.1. Потери в структуре энергопотребления и направления их минимизации
- •2.4.2. Технико-экономическая эффективность аскуэ
- •3. Принципы организации контроля и учета в системах снабжения энергией и энергоресурсами
- •3.1. Краткий обзор источников энергии
- •3.1.1. Централизованные источники энергии
- •3.1.2. Автономные источники энергии
- •3.1.3. Возобновляемые источники энергии
- •3.2. Системы снабжения теплом и теплоносителями
- •3.2.1. Назначение и структура систем теплоснабжения
- •3.2.2. Основные схемы систем теплоснабжения и теплопотребления
- •3.2.3. Автономные системы теплоснабжения
- •3.3. Системы снабжения электрической энергией
- •3.3.1. Общие определения электрических цепей и параметров
- •3.3.2. Структура системы централизованного энергоснабжения
- •3.3.3. Контролируемые и учитываемые параметры электроснабжения
- •3.4. Системы газоснабжения
- •3.4.1. Назначение и структура систем газоснабжения
- •3.4.2. Состав и функции узла коммерческого учета газа
- •3.5. Комплексный инструментальный учет и контроль в системах энергопотребления
- •3.5.1. Структура системы комплексного учета и контроля параметров энергопотребления
- •3.5.2. Характеристика контролируемых параметров
- •3.5.3 Организационно-технические мероприятия при создании аскуэ
- •4. Формирование измерительной информации
- •4.1. Информационные сигналы
- •4.2. Измерительные преобразователи
- •4.3. Интеллектуальные датчики, счетчики и вычислители
- •4.4. Погрешность и класс точности средств измерения
- •4.5. Метрологическое обеспечение измерительных приборов
- •4.6. Основные требования к измерительной аппаратуре аскуэ
- •5. Обработка и отображение информации средствами вычислительной техники
- •5.1. Основные характеристики и функции микроЭвм в аскуэ
- •Параметры линейки промышленных компьютеров Rokcwell Automation
- •Основные параметры промышленных контроллеров
- •5.2. Программное обеспечение
- •5.2.1. Общие сведения о программном обеспечении
- •5.2.2. Программное обеспечение аскуэ
- •5.3. Аппаратура локального контроля аскуэ
- •5.3.1. Назначение приборов локального контроля (плк)
- •5.3.2. Классификация приборов локального контроля
- •5.3.3. Принципы построения приборов локального контроля для аскуэ
- •6. Передача измерительной информации
- •6.1. Общие принципы передачи информации
- •6.1.1. Структурная схема канала передачи информации
- •6.1.2. Параметры цифрового потока
- •Взаимосвязь скорости передачи данных и диапазона частот сигнала
- •6.1.3. Мультиплексирование цифровых сигналов
- •Характеристика иерархий мультиплексированных цифровых потоков
- •6.2. Стандартные последовательные цифровые коды
- •6.3. Проводные и волоконно-оптические линии связи
- •6.3.1. Проводные линии
- •6.3.2. Волоконно-оптические линии связи
- •6.4. Интерфейсы измерительных каналов и проводных линий связи
- •6.4.1. Интерфейсы аппаратуры нижнего уровня аскуэ
- •6.4.2. Интерфейсы аппаратуры среднего и верхнего уровней
- •6.4.3. Преобразователи интерфейсов
- •6.5. Передача информации с рассредоточенных объектов аскуэ по беспроводной связи
- •6.5.1. Основные параметры линий беспроводной передачи данных
- •Частотные диапазоны радиоаппаратуры передачи данных по беспроводным линиям связи
- •6.5.2. Радиорелейные линии связи и радиоудлинители
- •6.5.3. Спутниковые системы связи
- •6.5.4. Оптические линии связи
- •6.6. Модемы
- •6.6.1. Структурная схема и классификация модемов
- •6.6.2. Передача данных через модемы
- •Параметры модемов для асинхронной передачи данных по выделенной телефонной линии
- •7. Телекоммуникационные сети
- •7.1. Классификация сетей
- •7.2. Передача информации в сетях
- •Структура сети протоколов
- •Типы сред связи в локальных сетях
- •7.3. Локальные сети
- •Характеристики локальных сетей DeviceNet, Control Net, Ethernet/ip
- •7.4. Глобальные сети
- •Сравнительные характеристики пропускной способности локальных и глобальных сетей
- •7.5. Передача информации через сеть Internet
- •7.6. Передача информации через сети сотовой мобильной связи
- •7.7. Scada-системы
- •Базовые топологии scada-систем
- •7.8. Защита от вирусов и несанкционированного доступа
- •7.8.1. Общие понятия о компьютерных вирусах и методах сетевой защиты
- •7.8.2. Защита информации в аскуэ
- •8. Измерительные устройства нижнего уровня аскуэ
- •8.1. Измерение температуры
- •8.1.1. Общие сведения об измерении температуры
- •8.1.2. Термоэлектрические термометры
- •8.1.3. Электрические термометры сопротивления
- •8.1.4. Полупроводниковые и электронные термометры сопротивления
- •8.1.5. Измерение температур тел по их тепловому излучению
- •8.2. Измерение давления и разности давлений
- •8.2.1. Общие сведения об измерении давления и разности давлений
- •8.2.2. Пьезоэлектрические датчики
- •8.2.3. Тензорезисторы
- •8.2.4. Интеллектуальные датчики давления
- •8.3. Измерение расхода и количества жидкостей, газа, пара
- •8.3.1. Общие положения
- •8.3.2. Измерение расхода методом переменного перепада давления
- •8.3.3. Тахометрические расходомеры
- •8.3.4. Ультразвуковые расходомеры
- •8.3.5. Вихревые расходомеры
- •8.3.6. Электромагнитные расходомеры
- •8.4. Преобразователи угловых и линейных перемещений, давления, влажности, концентрации
- •8.4.1. Емкостные датчики
- •8.4.2. Оптоэлектронные преобразователи
- •9. Приборы учета и контроля электроснабжения
- •9.1. Измерительные преобразователи
- •9.1.1. Измерительные трансформаторы тока и напряжения
- •9.1.2.Электродинамический фазометр
- •9.1.3.Электронные частотомеры
- •9.2. Счетчики и приборы контроля качества энергии
- •9.2.1. Электрические счетчики
- •9.2.2. Электронные счетчики
- •9.2.3. Интеллектуальные счетчики
- •10. Приборы учета тепла и водоснабжения
- •10.1. Основные характеристики и классификация приборов учета тепла и водоснабжения
- •10.2. Приборы учета тепловой энергии
- •10.3. Структурное построение и функциональные возможности тепловых счетчиков
- •Формулы расчета параметров теплопотребления
- •10.4. Сбор и передача измерительной информации
- •11. Приборы учета расхода газа
- •11.1. Назначение и состав приборов учета расхода газа
- •11.2. Корректоры объема газа
- •Метрологические характеристики вкг-2
- •Заключение
- •Список литературы
- •Автоматизированная система коммерческого учета электроэнергии. Http://www.Ntcecm.Ru/pages/prog4.Htm.
- •Программно-технический комплекс «Энергоконтроль».
- •Анисимов д.Л. Введение в общую теорию учета энергоносителей. Http://www.Teplopunkt.Ru/articles/0062_adl_thr.Html.
- •Системы учёта тепла и воды немецкого производства.
- •Лачков в.И., Недзвецкий в.К. Корректоры газа от компании «Теплоком». Http://www.Teplopunkt.Ru/articles/0022_lvi_gaz.Html.
- •Производители приборов учета энергоресурсов.
- •Приложения
- •Предприятия – разработчики аскуэ и системного оборудования
- •Определения основных физических величин и процессов
- •Условные обозначения на схемах снабжения теплом и энергоносителями
- •Условные обозначения на схемах электроснабжения
- •Пересчет шкал энергии, тепла и работы
- •Пересчет шкал давления
- •Пересчет температурных шкал
- •Варианты тарифных ставок и периодов при расчетах за потребляемую электроэнергию
- •Основные нормативные документы по техническому регулированию и метрологии
- •Логические операции, элементы и устройства вычислительной техники п.6.1. Коды
- •Термины, обозначающие совокупности двоичных разрядов
- •П.6.2. Основы алгебры логики
- •П.6.3. Преобразующие устройства
- •Программа работы шифратора
- •П.6.4. Процессор
- •Основные сокращения, термины, стандарты и определения в области связи и сетевых коммуникаций
- •Глоссарий терминов и стандартов
- •Состав стандарта iec 60870-5
- •Приложение 8 Аппаратура передачи данных по радиорелейным линям связи
- •Параметры аналоговой радиорелейной аппаратуры
- •Некоторые типы аппаратуры цифровых ррл
- •Виды модуляции в цифровых системах связи
- •Сравнительные характеристики измерительных приборов
- •Диапазоны и точность измерения параметров физических величин
- •Сравнительные характеристики тепловычислителей
- •Автоматизированные системы контроля и учета энергии
- •443100, Г.Самара, ул. Молодогвардейская, 244. Корпус 8
6.3. Проводные и волоконно-оптические линии связи
6.3.1. Проводные линии
Наиболее распространенные в АСКУЭ проводные каналы связи – витая пара и коаксиальный кабель [104, 106, 118, 121].
Медный кабель на витой паре (twisted pair) очень гибок и имеет удобные для использования коннекторы, которые легко вставляются в порты сетевого оборудования, ПК и принтеров (рис. 6.10). Размер (диаметр) медных проводников витых пар определяется специальным калибром. Наиболее широко для калибрования используется американский стандарт American Wire Gage (AWG). Меньшим значениям диаметров проводников соответствуют большие значения калибра. При этом проводники большего размера обладают меньшим удельным сопротивлением на единицу длины.
а б в
Р и с. 6.10. Витые пары: а – двужильная; б – восьмижильная (четыре пары); в – разъем RJ-45
Для изготовления оболочек кабелей обычно применяются два типа материалов: поливинилхлорид (ПВХ, PVC) и фторуглеродные полимеры. Экранирование кабелей иногда используется для обеспечения лучшей невосприимчивости к шуму и снижения излучения в окружающую среду. Обычно применяются два типа экранов в кабелях STP – фольга и сетка. Кабели на основе витой пары находят широкое применение в сетях передачи данных, определяемых национальными и международными стандартами TIA/EIA 568-A, ISO/IEC 11801, EN 50173. Эти стандарты жестко регламентируют максимальную длину кабелей, а также ряд требований, предъявляемых к кабелю как к компоненту структурированной кабельной системы. Основными из них являются собственное и переходное затухания, емкость, уровень возвратных потерь, импеданс и т.д. В зависимости от скорости передачи данных кабельные компоненты делятся на пять категорий по частотным характеристикам: Cat.3 – до 16 МГц, используется в телефонии; Cat.5 – до 100 МГц, применяется в сетях до 100 Мбит/с; Cat.5e – до 120 МГц; Cat.6 – до 250 МГц; Cat.7– с полосой 600 МГц применяется в каналах передачи данных со скоростью до 1000 Мбит/с. Для подключения витой пары в основном используется разъем RJ-45 (рис. 6.9, в). Витые пары производятся многими отечественными и зарубежными фирмами: Спецкабель, Signamax, Belden, Nexans, TELDOR, AESP и др.
Коаксиальный кабель состоит из центрального медного проводника (сплошного или многожильного), покрытого слоем полимерного изолятора, поверх которого расположен другой проводник (экран). Экран представляет собой оплетку из медного провода вокруг изолятора и/или обернутую вокруг изолятора фольгу. При наличии сильных помех используется кабель с учетверенной экранизацией из двойного слоя фольги и двойного слоя металлической оплетки. Коаксиальный кабель обеспечивает более высокую помехоустойчивость по сравнению с витой парой, но он дороже. Существуют различные виды коаксиальных кабелей, отличающиеся диаметром, волновым сопротивлением, формой, соединительными элементами. В разных сетевых коммуникациях используют один из двух типов коаксиальных кабелей: толстый и тонкий.
Толстый (thick) коаксиальный кабель (рис. 6.11, а) – относительно жесткий кабель с диаметреом около 1 см (0,5 дюймов). Иногда его называют «стандартный Ethernet», поскольку он был первым типом кабеля, применяемым в Ethernet – популярной сетевой архитектуре. Медная жила этого кабеля позволяет передавать информацию на расстояние до 500 м. Для подключения абонента к толстому коаксиальному кабелю применяют специальное устройство – трансивер (transceiver), снабженный коннектором DB-15 или DIX. В некоторых сетях для согласования волнового сопротивления используют терминаторы, которые устанавливаются на концах открытого кабеля.
а б в
г
Р и с. 6.11. Коаксиальные кабели: а – толстый одножильный; б – тонкий одножильный с экранирующей оплеткой; в – тонкий многожильный с двойной оплеткой; г – ВNС-коннекторы и терминатор
Тонкий (thin) коаксиальный кабель (рис. 6.11, б-г) – гибкий кабель диаметром около 0,5 см (0.25 дюймов). Он прост в применении и годится практически для любого типа сети. Тонкий коаксиальный кабель способен передавать сигнал на расстояние до 185 м без заметного искажения, вызванного затуханием. Тонкий коаксиальный кабель относится к группе, которая называется семейством RG-58, его волновое сопротивление (impedance) равно 50 Ом. Для подключения тонкого коаксиального кабеля используют BNC-коннекторы (British Naval Connector, BNC).
При передаче информации по проводным линиям связи из взрывоопасных зон используют барьеры искрозащиты, которые обеспечивают взрывозащищенность электрических цепей измерительных преобразователей и исполнительных устройств в системах измерения, регулирования, сигнализации, аварийной защиты и управления энергопотреблением.
