
- •Методы защиты информации в компьютерных технологиях Москва 2011
- •1. Основные направления криптологии.
- •2. Элементы симметричных криптографических преобразований. История симметричных криптографических преобразований в приложениях.
- •2.2. Табличное шифрование методом перестановки по ключевому слову или фразе, задающими перестановку.
- •2.3. Табличное шифрование методом двойной перестановки.
- •2.5. Шифры сложной замены.
- •3. Методы криптографических преобразований с открытым ключом.
- •3.1. Алгоритм нахождения числа по модулю.
- •3.2. Вычисление обратных величин в модулярной алгебре.
- •3.3. Алгоритм операции возведения числа в степень по модулю.
- •3.4. Определение односторонней функции.
- •4. Алгоритмы формирования и функционирования криптографических систем с открытым ключом.
- •4.1. Алгоритм криптографической системы rsa (Райвест-Шамир-Адлеман).
- •4.2. Алгоритм криптографической системы на основе вычисления дискретных логарифмов в конечном поле – алгоритм Эль Гамаля.
- •4.3. Алгоритм функционирования криптографической системы на основе дискретного логарифмирования в метрике эллиптических кривых.
- •4.3.1. Основные операции криптографических преобразований в метрике эллиптических кривых.
- •4.3.2. Преобразование Диффи-Хеллмана в системах криптографии с открытым ключом.
- •XcxпШифратор
- •4.4. Формирование криптограмм открытых сообщений и их дешифрование с использованием методов дискретного логарифмирования в метрике эллиптических кривых.
- •4.4.1. Вычисление парного сеансового ключа шифрования-дешифрования для абонентов а и в на основе преобразований Диффи-Хеллмана.
- •4.4.3. Дешифрование абонентом а криптограммы, полученной от абонента в с использованием парного секретного симметричного ключа, сформированного по методу Диффи-Хеллмана в метрике эллиптических кривых.
- •5. Алгоритмы электронной цифровой подписи.
- •5.1. Алгоритм электронной цифровой подписи rsa (Райвест-Шамир-Адлеман).
- •5.2. Алгоритм электронной цифровой подписи Эль Гамаля (egsa). Egsa (el Gamal Signature Algorithm).
- •5. 3. Алгоритм электронной цифровой подписи dsa (Digital Signature Algorithm).
- •5.4. Алгоритм электронной цифровой подписи гост р34.10-94. (Отечественный стандарт электронной цифровой подписи).
- •5.5. Алгоритм электронной цифровой подписи гост р34.10-2001. (Отечественный стандарт электронной цифровой подписи).
В.Ф. Макаров
Методы защиты информации в компьютерных технологиях Москва 2011
ОГЛАВЛЕНИЕ
1.Основные направления криптологии………………………………....…4
2.Элементы симметричных криптографических преобразований. История симметричных криптографических преобразований в приложениях.
3. Методы криптографических преобразований с открытым ключом….8
3.1. Алгоритм нахождения числа по модулю…………………………….11
3.2. Вычисление обратных величин в модулярной алгебре……..………12
3.3. Алгоритм операции возведения числа в степень по модулю……….13
3.4. Определение односторонней функции………………………………...15
4. Алгоритмы формирования и функционирования криптографических систем с открытым ключом…………………………………………………17
4.1. Алгоритм криптографической системы RSA…………………………17
4.2. Алгоритм криптографической системы на основе вычисления дискретных логарифмов в конечном поле – алгоритм Эль Гамаля………..23
4.3. Алгоритм функционирования криптографической системы на основе дискретного логарифмирования в метрике эллиптических кривых……28
4.3.1. Основные операции криптографических преобразований
в метрике эллиптических кривых…………………………………………..32
4.4. Преобразование Диффи-Хеллмана в системах криптографии с открытым ключом…………………………………………………………………..37
4.4.1. Алгоритм автоматического формирования
парных симметричных ключей шифрования-дешифрования
открытых сообщений на рабочих станциях абонентов
корпоративной системы……………………………………………………...39
4.5. Формирование криптограмм открытых сообщений и их дешифрование с использованием методов дискретного логарифмирования в метрике эллиптических кривых…………………………………………………………43
5. Алгоритмы электронной цифровой подписи…………………………..78
5.1. Алгоритм электронной цифровой подписи RSA (Райвест-Шамир-Адлеман)……………………………………………………………………...85
5.2. Алгоритм электронной цифровой подписи Эль Гамаля (EGSA). EGSA (EL Gamal Signature Algorithm)…………………………………………….92
5. 3. Алгоритм электронной цифровой подписи DSA (Digital Signature Algorithm)…………………………………………………………………………….99
5.4. Алгоритм электронной цифровой подписи ГОСТ Р34.10-94. (Отечественный стандарт электронной цифровой подписи)……………………….104
5.5. Алгоритм электронной цифровой подписи ГОСТ Р34.10-2001. (Отечественный стандарт электронной цифровой подписи)………………………110
1. Основные направления криптологии.
Со времени появления письменности стала развиваться такая отрасль научных знаний как полеография – историко - филологическая дисциплина, изучающая памятники древней письменности с целью установления места и времени их создания. В основе знаний полеографии лежит также изучений сокращений письма и тайнописи, методов их расшифровки. Все это повлекло появление нового, направления научных знаний полеографии, что, в свою очередь, привело к формированию научно-прикладного направления – криптологии (крипто-kriptos(греч.)-тайный, скрытый; логика-logike(греч.)-раздел научных познаний о способах доказательств и опровержений). Однако, это понятие в прикладном аспекте теории передачи информации интерпретируется как наука о создании и анализе систем безопасной связи. Такое определение, далеко не в полной мере, характеризует фундаментально-прикладную семантику научного направления – криптологии, а является лишь небольшой видовой структурной составляющей. Более полно научное направление «криптология» целесообразно трактовать как науку о кодообразованиях семантических высказываний.
В свою очередь, научное направление «криптология» подразделяется на три функционально зависимых логико-математических и технических направления: криптография, криптоанализ, стеганография.
Криптография (греч. kriptos-тайный, скрытый; graho-пишу) – наука о методах защиты информации на основе ее преобразования с помощью различных шифров и сохранением достоверности семантического содержания.
Криптография представляет собой отрасль науки полеографии, изучающей графику систем тайнописи. Исходя из современных позиций теории передачи информации и теории кодирования, криптография определяется как отрасль научных знаний о методах обеспечения секретности и достоверности данных при передаче по каналам связи и их хранения в устройствах оперативной и долговременной памяти.
Криптоанализ (греч. kriptos-тайный, скрытый; analysis-разложение) – наука о методах раскрытия и модификации данных. Это научное направление предметом своего изучения ставит две цели.
Первая цель – исследование закриптографированной информации с целью восстановления семантического содержания исходного содержания без знания ключа шифрования (концептуальное распознавание).
Вторая цель – на основе изучения и распознавания методов криптографирования производить фальсификацию исходных документов с целью передачи ложной инфоромации.
Стеганография (stega-клеймо; graho-пишу) – метод преобразования информации, скрывающий сам факт передачи какого-либо сообщения, метод, в основе которого лежит принцип разведзащищенности конфиденциальных сообщений. В этом случае исходное сообщение может быть представлено в виде речевого сигнала, музыкальной мелодии, сигнала видеоизображения, другого текстового документа.
Криптография как прикладная наука получила свое развитие еще с ХХ века до нашей эры. Так например, при раскопках древней цивилизации в Месопотамии найдены глиняные таблички, содержащие тайнопись о глазурировании гончарных изделий, т.е. первые шифртексты носили некоторый коммерческий характер. В дальнейшем стали шифроваться тексты медицинского характера, купли-продажи скота и недвижимости. Дальнейшее развитие подготовки и передачи зашифрованных текстов получили при ведении боевых действий. Относительная широкомасштабность военных мероприятий привела к необходимости разработки и внедрения средств «малой механизации» для шифрования секретных сообщений. Известен исторический факт, описанный древнегреческим писателем и историком Плутархом (автор «Сравнительных жизнеописаний», содержащих 50 биографий выдающихся греков и римлян), о реализации операции шифрования с помощью «средства малой механизации» - шифрующего устройства «скиталь». В качестве шифрующего устройства выбирался цилиндр заданного диаметра, на который наматывалась полоска бумажной ленты. На эту ленту записывался исходный текст, затем лента сматывалась с цилиндра и в промежутки между буквами (L=2ПR) исходного текста вписывались произвольно буквы естественного алфавита. Таким образом, несанкционированный пользователь не мог прочитать зашифрованное сообщение и распознать исходный текст без знания диаметра цилиндра. Ключом доступа к зашифрованной информации являлся диаметр цилиндра, который служил как шифрообразующим механизмом, так и устройством дешифрования. В этом случае дешифрующим устройством являлся цилиндр такого же диаметра, как и при шифровании. Бумажная лента с записанным на нее зашифрованным текстом наматывалась на этот цилиндр, и производилось расшифровывание зашифрованного текста.
Этот метод явился прообразом современных симметричных криптографических систем (одноключевых систем шифрования-дешифрования).
Этот метод и само устройство шифрования-дешифрования прослужили довольно долго, пока древнегреческий философ и ученый Аристотель не проявил себя в качестве криптоаналитика и не предложил в качестве криптоаналитического устройства распознавания диаметра цилиндра (скиталя – ключа шифрования-дешифрования) использовать конус, на который и наматывалась бумажная лента с зашифрованной записью. То место на цилиндре, где образовывалась читаемая часть слова или полное слово, определяло диаметр цилиндра (скиталя).
Активное проведение военных действий явилось мощным стимулирующим воздействием на разработку методов шифрования-дешифрования при передаче секретных сообщений. Так, в 56 году до нашей эры во время войны с галлами римский диктатор К. Цезарь при подчинении Риму заальпийской Галлии использовал в системе передачи секретных сообщений шифры замены. Такими методами шифрования-дешифрования явились «Шифр Цезаря со смещением», «Шифр Цезаря с ключевым словом», «Аффинная система подстановок» и т.д.
В конце XIX века появились механические шифровальные устройства, работающие по методу замены: шифровальное колесо Болтона; шифротор М-94, который находился на вооружении американской армии с 1924 года по 1943 год. Дальнейшей модификацией изделия М-94 явилась шифровальная машина М-209, которая была разработана шведским криптографом Б. Хагелином в 1934 году по заданию французских спецслужб. Эта шифровальная машина была выпущена серией более 140 тысяч штук и находилась на вооружении американской армии во время второй мировой войны. Достаточно мощное развитие механизм шифрования получил и в фашистской Германии при создании шифровальной машины Enigma.
Многовековая история развития науки криптографии показывает, что относительно до недавнего времени, она была направлена на построение криптографических систем военного назначения. Однако, в последние десятилетия это научное направление нашло широкое применение практически во всех сферах человеческой деятельности, выполняя функции как криптографической защиты электронных сообщений от несанкционированного восприятия и распознавания, так и аутентификации (подтверждение подлинности) принятых электронных сообщений с использованием инструментария электронной цифровой подписи.
В одной из своих работ «Прикладная криптография» американский ученый Брюс Шнайер одним предложением полно охарактеризовал значимость криптографии на современном этапе развития информационных технологий. Он отметил, что: «Шифрование слишком важно, чтобы оставить его только правительствам». Криптографический инструментарий является единственным и высоконадежным методом, обеспечивающим защиту информации в сетевых компьютерных технологиях различного уровня и назначения. Актуальность этого направления является однозначно безусловным неоспоримым фактором во всех сферах управления государственной и коммерческой деятельности: оборонной, правоохранительной, экономической, банковской, коммерческой, образовательной и т.д.
При криптографировании открытых электронных сообщений при передаче их по открытым общедоступным каналам, включая и каналы Internet технологий, различают три основных метода:
- симметричный (одноключевой) метод преобразования открытых сообщений;
- асимметричный (двухключевой) метод преобразование открытых сообщений (криптография с открытым ключом);
- комбинированный метод преобразования открытых сообщений.
Наиболее широкое распространение в открытых сетевых компьютерных технологиях на современном этапе разработок и эксплуатации криптографических систем защиты и аутентификации электронных документов и сообщений получили комбинированные криптографические системы, сочетающие в себе достоинства симметричных и асимметричных преобразований.
Метод асимметричного преобразования открытых сообщений реализован в криптографических системах с открытым ключом. Дальнейшим развитием метода асимметричного преобразования, получившим на современном этапе наибольшее распространение и определенный как наиболее перспективный, идентифицирован метод построения криптографических систем, построенный на теоретических положениях эллиптических кривых. Изначально теорию построения криптографических систем на основе асимметричных методов необходимо рассмотреть в базисе криптосистем с открытым ключом.