
- •65 Технология бурения нефтяных и газовых скважин,
- •Технология бурения нефтяных и газовых скважин
- •Институт природных ресурсов – ипр
- •Раздел 1. Общие сведения о бурении скважин
- •1.1. Назначение, цели бурения, конструкция скважин
- •1.2. Технологические циклы бурения и строительства скважин
- •1.3. Основные способы бурения скважин
- •1.4. Основные способы бурения скважин на нефть и газ
- •1.5. Перспективы использования новейших энергетических источников для целей бурения скважин
- •1.6. Способы направленного бурения скважин на нефть и газ
- •1.7. Бурение на акваториях
- •Раздел 2. Основные закономерности поведения горных пород при механическом разрушении
- •2.1. Общие положения
- •2.2. Механические и абразивные свойства горных пород
- •2.3. Влияние всестороннего давления и температуры на некоторые свойства горных пород
- •2.4. Основные закономерности разрушения горных пород
- •2.5. Влияние забойной гидродинамики на процессы разрушения горных пород при бурении скважин
- •2.6. Влияние показателей свойств буровых растворов и их типов на эффективность разрушения породы на забое скважины
- •2.7. Влияние режима промывки на скорость бурения
- •2.8. Энергетика процессов разрушения горных пород
- •3. Гидроаэромеханика в бурении
- •3.1. Общие сведения
- •3.2. Методы определения основных реологических характеристик буровых растворов
- •3.3. Гидродинамика при спускоподъемных операциях
- •3.4. Местные гидравлические сопротивления
- •(Буровые долота)
- •8.1. Классификация буровых долот:
- •8.2. Шарошечный породоразрушающий инструмент (при):
- •9.1. Лопастные долота
- •9.2. Фрезерные долота
- •9.3. Долота исм
- •9.4. Алмазные долота
- •9.5. Породоразрушающий инструмент режуще-скалывающего действия типа pdc с алмазно-твердосплавными пластинами (атп)
- •9.5.1. Общие положения
- •9.5.2. Изготовление резцов атп
- •9.5.3. Геометрия долот pdс
- •9.5.4. Технико-технологические характеристики отечественного породоразрушающего инструмента режуще-скалывающего действия с импортными алмазно-твердосплавными пластинами
- •10.1. Шарошечные бурильные головки
- •10.2. Лопастные, фрезерные и твердосплавные бурильные головки
- •10.3. Алмазные бурильные головки и бурильные головки исм
- •10.4. Керноприемныи инструмент
- •10.5. Расширители
- •10.6. Калибрующе-центрирующий инструмент
- •11.1. Общие положения:
- •11.2. Трубы бурильные ведущие
- •11.3. Трубы бурильные с высаженными концами и муфты к ним
- •11.4. Замки для бурильных труб с высаженными концами
- •12.1. Трубы бурильные с приваренными замками
- •12.2. Легкосплавные бурильные трубы
- •12.3. Утяжеленные бурильные трубы
- •12.3.1. Утяжеленные бурильные сбалансированные трубы убтс-2
- •12.3.2. Утяжеленные бурильные трубы (горячекатаные)
- •12.3.3. Утяжеленные бурильные трубы с замками убтсз
- •12.4. Переводники для бурильных колонн
- •12.5. Резиновые кольца для бурильных труб
- •12.6. Обратные клапаны для бурильных труб
- •12.7. Опорно-центрирующие элементы
- •13.1. Проектирование бурильной колонны
- •13.1.1.Основные определения
- •13.1.2. Нагрузки, действующие на бурильную колонну
- •Общий порядок проектирования и расчета бурильных колонн
- •13.1.4. Расчет убт
- •Соотношения диметров долот и основной ступени убт, мм
- •Рекомендуемые соотношения диаметров обсадных и бурильных колонн, мм
- •Отношение диаметров долот и наибольших поперечных размеров промежуточных опор, мм
- •Рекомендуемые моменты свинчивания убт, кГс·м
- •13.1.5. Общие положения проектирования колонны бурильных труб
- •Расчет запасов прочности по усталости колонны бурильных труб
- •Механические свойства материала бурильных труб
- •Геометрические и весовые характеристики бурильных труб
- •Определение длины секции бт
- •13.1.7.1. Определение наибольшей допустимой длины секции бт
- •13.1.7.2. Корректировка допускаемой длины секций исходя из действующих эквивалентных напряжений
- •Расчет бурильных труб на избыточное давление
- •Расчет замковых соединений
- •13.1.10. Расчет допустимой глубины спуска кбт на клиновых захватах
- •13.1.11. Проверочный расчет бк
- •14.1. Общие положения
- •14.2. Выбор способа бурения
- •14.3. Забойные двигатели
- •14.3.1. Турбобуры. Турбинное бурение
- •15.1. Турбины современных турбобуров
- •15.2. Регулирование характеристики турбобура
- •15.3. Проектирование характеристики турбобура
- •15.1. Общие положения:
- •15.2. Методологическая концепция процесса проектирования турбобуров:
- •15.3. Методика расчета энергетических характеристик турбобуров:
- •Пример расчета характеристики турбобура
- •16.1. Бурение винтовыми забойными двигателями
- •16.2. Турбовинтовые гидравлические двигатели
- •17.1. Электробуры. Электробурение
- •17.2. Роторное бурение
- •18.1. Механическое углубление: показатели и параметры режимов бурения
- •1. Вводные понятия
- •2. Влияние различных факторов на процесс бурения
- •18.2. Влияние дифференциального и угнетающего давлений на разрушение горных пород
- •19.1. Перспективы внедрения способов местного регулирование давления в зоне разрушения (дифференциального давления) в практику бурения.
- •20.1. Проектирование режимов бурения
- •20.1.1. Обоснование класса и типоразмеров породоразрушающих инструментов по интервалам бурения:
- •Статистический анализ отработки долот в аналогичных геолого-технических условий.
- •20.1.4. Расчет необходимого расхода очистного агента
- •20.2. Рациональная отработка долот
- •Список нормативно-справочных и инструктивно-методических материалов, рекомендуемых при изучении технологии бурения нефтяных и газовых скважин
20.1.4. Расчет необходимого расхода очистного агента
Расход промывочной жидкости должен обеспечить:
эффективную очистку забоя скважины от шлама Q1;
транспортирование шлама на поверхность без аккумуляции его в кольцевом пространстве между бурильными трубами и стенками скважины Q2;
предотвращение гидроразрыва любого из перебуриваемых проницаемых пластов разреза скважины Q3;
сохранение целостности и нормального диаметра ствола скважины (предупреждение эрозии стенок скважины) Q4;
реализацию гидромониторного эффекта Q5;
предупреждает образование сальников и прихватов Q6.
Расчет расхода промывочной жидкости для эффективности очистки забоя скважины Q1 делается по формуле:
Q1= К· SЗАБ л/сек, (20.7.)
Где:
К – коэффициент удельного расхода жидкости равный 0,3…0,65 м3/сек на 1 м2 забоя;
SЗАБ – площадь забоя м2, определяется по формуле:
SЗАБ =0,785·ДД2 м2 . (20.8.)
Расчет расхода промывочной жидкости при превышении которой возникает опасность образования сальников и прихватов Q6 определяется по формуле:
Q6=VВОСХ·SКП м3/сек, (20.9.)
Где:
VВОСХ – скорость восходящего потока; рекомендуемая скорость согласно промысловой классификации горных пород находится в пределах: М=0,9…1,3 м/сек, С=0,7…0,9 м/сек.
SКП – площадь кольцевого пространства, м2, которая рассчитывается по формуле:
SКП =0,785·(ДД2 – dБТ2) м2, (20.10.)
Где:
dБТ – диаметр бурильных труб, м2;
Расчет расхода промывочной жидкости, исходя из условия создания гидромониторного эффекта Q5, рассчитывается по формуле:
Q5= Fн·0,75 м3/сек, (20.11.)
где:
Fн – площадь поперечного сечения насадок, м2; определяется по формуле:
Fн = π·dН/4·m м2, (20.12.)
где:
dН – диаметр насадок, м;
m – число насадок, обычно m=3.
Расчет расхода промывочной жидкости, обеспечивающий вынос шлама без аккумуляции шлама в кольцевом пространстве Q2 ведется по формуле:
Q2= VКР·SMAX+(SЗАБ ·VMЕХ·(jП –jЖ))/(jСМ - jЖ) м3/сек, (20.13.)
Где:
VКР – скорость частиц шлама относительно промывочной жидкости, м/сек; обычно VКР =0,5 м/сек;
SMAX – максимальная площадь кольцевого пространства в открытом стволе, м2, определяемая по формуле (20.10);
VMЕХ – механическая скорость бурения, м/сек;
jП – удельный вес породы, Н/м3;
jЖ - удельный вес промывочной жидкости, Н/м3;
jСМ - удельный вес смеси шлама и промывочной жидкости, Н/м3 .
Пределы изменения: jСМ - jЖ=0,01…0,02·104 Н/м3.
Расчет расхода промывочной жидкости, предотвращающего размыв стенок скважины Q4, ведется по формуле:
Q4= VКП MAX·SMIN м3/сек, (20.14.)
где:
SMIN – минимальная площадь кольцевого пространства;
VКП MAX - максимально допустимая скорость течения, жидкости в кольцевом пространстве, м/сек; возможно принять VКП MAX =1,5 м/сек.
Вся вышеприведенная последовательность расчетов производится для каждого интервала скважины с одинаковыми гидравлическими параметрами. При любом изменении гидравлического параметра в циркуляционной системе (размер и тип насадок, диаметр ПРИ, типоразмер обсадной колонны и проч.) требует расчета собственной гидравлической программы.
Результаты расчетов расходов анализируются с использованием числовой оси в целях нахождения так называемой «области допустимых расходов» (ОДР):
а) «нижняя» граница ОДР не должна быть меньше большего значения из значений Q1 и Q2;
б) «верхняя» граница ОДР не должна быть больше меньшего из значений Q3 и Q4.
Уточненный выбор расхода промывочной жидкости обусловлен производительностью насосов при заданном коэффициенте наполнения по формуле:
Q=к·n·Qн м3/сек, (20.15.)
Где:
к – коэффициент наполнения (к=0,8);
n – число насосов;
Qн – производительность насоса с коэффициент наполнения к=1, 0.
Расчитанный по формуле (20.15.) Qн насоса должен обязательно находится внутри области допустимых расходов.
Однако, при полученном уточненном значении расхода промывочной жидкости, соответствующем конкретной характеристике насоса, может возникнуть ситуация, когда создаваемый напор данного насосного оборудования не преодолевает возникающих потерь давления в циркуляционной системе. В таком случае, понадобится либо уменьшение принятого расхода, либо изменение характеристик насосного оборудования и инструмента (диаметр насадок ПРИ и проч.).
Все это требует расчета суммарных гидравлических потерь в циркуляционной системе для полученного значения Qн, что собственно также относится к выработке гидравлической программы скважины. И без данных расчетов и обоснований нельзя считать задачу выбора оптимального расхода промывочной жидкости окончательной.
Поэтому следующим шагом проектирования гидравлической программы скважины является расчет суммарных потерь давления в циркуляционной системе данного интервала скважины на конкретной втулке выбранного насоса (ов).
Если суммарные потери в циркуляционной системе оказываются меньше напора насоса (ов) на данной втулке, то задача проектирования расхода бурового раствора, а также и режима работы бурового насоса на конкретном интервале решена.
Если это не так, то из имеющейся области допустимых расходов необходимо выбрать меньшее значение Q, после чего вновь:
- для выбранного насоса подобрать втулку, реализующую новое значение расхода бурового раствора;
- просчитать суммарные потери давления в циркуляционной системе на новом значении расхода, определяемом характеристикой втулки.
- сравнить полученные потери с напором насоса на новой втулке.
Процедуру выполнять пока напор насоса не будет больше потерь в системе.