
- •65 Технология бурения нефтяных и газовых скважин,
- •Технология бурения нефтяных и газовых скважин
- •Институт природных ресурсов – ипр
- •Раздел 1. Общие сведения о бурении скважин
- •1.1. Назначение, цели бурения, конструкция скважин
- •1.2. Технологические циклы бурения и строительства скважин
- •1.3. Основные способы бурения скважин
- •1.4. Основные способы бурения скважин на нефть и газ
- •1.5. Перспективы использования новейших энергетических источников для целей бурения скважин
- •1.6. Способы направленного бурения скважин на нефть и газ
- •1.7. Бурение на акваториях
- •Раздел 2. Основные закономерности поведения горных пород при механическом разрушении
- •2.1. Общие положения
- •2.2. Механические и абразивные свойства горных пород
- •2.3. Влияние всестороннего давления и температуры на некоторые свойства горных пород
- •2.4. Основные закономерности разрушения горных пород
- •2.5. Влияние забойной гидродинамики на процессы разрушения горных пород при бурении скважин
- •2.6. Влияние показателей свойств буровых растворов и их типов на эффективность разрушения породы на забое скважины
- •2.7. Влияние режима промывки на скорость бурения
- •2.8. Энергетика процессов разрушения горных пород
- •3. Гидроаэромеханика в бурении
- •3.1. Общие сведения
- •3.2. Методы определения основных реологических характеристик буровых растворов
- •3.3. Гидродинамика при спускоподъемных операциях
- •3.4. Местные гидравлические сопротивления
- •(Буровые долота)
- •8.1. Классификация буровых долот:
- •8.2. Шарошечный породоразрушающий инструмент (при):
- •9.1. Лопастные долота
- •9.2. Фрезерные долота
- •9.3. Долота исм
- •9.4. Алмазные долота
- •9.5. Породоразрушающий инструмент режуще-скалывающего действия типа pdc с алмазно-твердосплавными пластинами (атп)
- •9.5.1. Общие положения
- •9.5.2. Изготовление резцов атп
- •9.5.3. Геометрия долот pdс
- •9.5.4. Технико-технологические характеристики отечественного породоразрушающего инструмента режуще-скалывающего действия с импортными алмазно-твердосплавными пластинами
- •10.1. Шарошечные бурильные головки
- •10.2. Лопастные, фрезерные и твердосплавные бурильные головки
- •10.3. Алмазные бурильные головки и бурильные головки исм
- •10.4. Керноприемныи инструмент
- •10.5. Расширители
- •10.6. Калибрующе-центрирующий инструмент
- •11.1. Общие положения:
- •11.2. Трубы бурильные ведущие
- •11.3. Трубы бурильные с высаженными концами и муфты к ним
- •11.4. Замки для бурильных труб с высаженными концами
- •12.1. Трубы бурильные с приваренными замками
- •12.2. Легкосплавные бурильные трубы
- •12.3. Утяжеленные бурильные трубы
- •12.3.1. Утяжеленные бурильные сбалансированные трубы убтс-2
- •12.3.2. Утяжеленные бурильные трубы (горячекатаные)
- •12.3.3. Утяжеленные бурильные трубы с замками убтсз
- •12.4. Переводники для бурильных колонн
- •12.5. Резиновые кольца для бурильных труб
- •12.6. Обратные клапаны для бурильных труб
- •12.7. Опорно-центрирующие элементы
- •13.1. Проектирование бурильной колонны
- •13.1.1.Основные определения
- •13.1.2. Нагрузки, действующие на бурильную колонну
- •Общий порядок проектирования и расчета бурильных колонн
- •13.1.4. Расчет убт
- •Соотношения диметров долот и основной ступени убт, мм
- •Рекомендуемые соотношения диаметров обсадных и бурильных колонн, мм
- •Отношение диаметров долот и наибольших поперечных размеров промежуточных опор, мм
- •Рекомендуемые моменты свинчивания убт, кГс·м
- •13.1.5. Общие положения проектирования колонны бурильных труб
- •Расчет запасов прочности по усталости колонны бурильных труб
- •Механические свойства материала бурильных труб
- •Геометрические и весовые характеристики бурильных труб
- •Определение длины секции бт
- •13.1.7.1. Определение наибольшей допустимой длины секции бт
- •13.1.7.2. Корректировка допускаемой длины секций исходя из действующих эквивалентных напряжений
- •Расчет бурильных труб на избыточное давление
- •Расчет замковых соединений
- •13.1.10. Расчет допустимой глубины спуска кбт на клиновых захватах
- •13.1.11. Проверочный расчет бк
- •14.1. Общие положения
- •14.2. Выбор способа бурения
- •14.3. Забойные двигатели
- •14.3.1. Турбобуры. Турбинное бурение
- •15.1. Турбины современных турбобуров
- •15.2. Регулирование характеристики турбобура
- •15.3. Проектирование характеристики турбобура
- •15.1. Общие положения:
- •15.2. Методологическая концепция процесса проектирования турбобуров:
- •15.3. Методика расчета энергетических характеристик турбобуров:
- •Пример расчета характеристики турбобура
- •16.1. Бурение винтовыми забойными двигателями
- •16.2. Турбовинтовые гидравлические двигатели
- •17.1. Электробуры. Электробурение
- •17.2. Роторное бурение
- •18.1. Механическое углубление: показатели и параметры режимов бурения
- •1. Вводные понятия
- •2. Влияние различных факторов на процесс бурения
- •18.2. Влияние дифференциального и угнетающего давлений на разрушение горных пород
- •19.1. Перспективы внедрения способов местного регулирование давления в зоне разрушения (дифференциального давления) в практику бурения.
- •20.1. Проектирование режимов бурения
- •20.1.1. Обоснование класса и типоразмеров породоразрушающих инструментов по интервалам бурения:
- •Статистический анализ отработки долот в аналогичных геолого-технических условий.
- •20.1.4. Расчет необходимого расхода очистного агента
- •20.2. Рациональная отработка долот
- •Список нормативно-справочных и инструктивно-методических материалов, рекомендуемых при изучении технологии бурения нефтяных и газовых скважин
16.1. Бурение винтовыми забойными двигателями
История создания винтовых двигателей
Начиная с 40-х годов в СССР основным техническим средством для бурения нефтяных и газовых скважин являлись многоступенчатые турбобуры.
Именно широкое распространение турбинного способа бурения обеспечило ускоренное разбуривание нефтегазоносных площадей Урало-Поволжья и Западной Сибири и тем самым позволило получать высокие темпы роста добычи нефти и газа.
Однако с увеличением средних глубин скважин, несмотря на совершенствование породоразрушающего инструмента и технологии вращательного способа бурения в отечественной нефтяной промышленности с каждым годом росла проблема сравнительно низкой проходки за рейс долота при использовании турбобуров - показателя, определяющего технико-экономические показатели бурения.
Несмотря на определенные усовершенствования техники и технологии турбинного бурения показатели работы долот на протяжении ряда лет улучшались весьма незначительно. Хотя в 70-е годы началось разбуривание месторождений Западной Сибири, отличающихся благоприятными условиями бурения (мягкие породы, относительно неглубокие скважины), средняя проходка за рейс по эксплуатационному бурению существенно отставала от аналогичного показателя в нефтяной промышленности США в 3 - 4 раза. Так, в 1981 - 1982 гг. средняя проходка за рейс (долбление) в США составила 350 м, в то время как в нашей стране этот показатель не превышал 90 м.
Существенное отставание в проходке за долбление было связано с тем, что в те годы отечественная практика бурения базировалась на высокоскоростном режиме бурения с применением многоступенчатых безредукторных турбобуров. Их характеристики не позволяли получать частоту вращения менее 400 - 500 об/мин с обеспечением необходимых осевых нагрузок и крутящих моментов, а также приемлемого уровня давления насосов и, как следствие, эффективно использовать революционные усовершенствования шарошечных долот с низкооборотными маслонаполненными опорами и твердосплавным вооружением.
В связи с этим перед специалистами и организаторами бурения в нашей стране встал вопрос о создании забойной двигательной техники для низкооборотного бурения.
Решение проблемы создания забойного гидравлического двигателя с характеристиками, отвечающими требованиям новых конструкции долот, было найдено в переходе от динамических машин, каким являются турбобуры, к объемным.
Первым работоспособным, нашедшим промышленное применение, оказался гидродвигатель, представляющий собой обращенный насос Муано - R. Moineau (1887 - 1948) - французский инженер, изобретатель одновинтовых гидравлических и пневматических машин, относящихся к планетарно-роторному типу гидромашин.
Многолетние поисковые научно-исследовательские работы во ВНИИБТ по совершенствованию забойных гидравлических двигателей привели в 1966 г. к появлению предложенного М.Т. Гусманом, С.С. Никомаровым, Н.Д. Деркачем, Ю.В. Захаровым и В.Н. Меныпениным нового типа ВЗД, рабочие органы которого впервые в мировой практике выполнены на базе многозаходного винтового героторного механизма, выполняющего функцию планетарного редуктора.
В последующие годы во ВНИИБТ и его Пермском филиале Д.Ф. Балденко, Ю.В. Вадецким, М.Т. Гусманом, Ю.В. Захаровым, A.M. Кочневым, С.С. Никомаровым и другими исследователями были созданы основы теории рабочего процесса, конструирования и технологии изготовления, разработана технология бурения винтовыми двигателями.
В результате многолетнего опыта бурения с использованием гидравлических забойных двигателей (турбобуров и ВЗД) сложился комплекс технических требований к современному забойному двигателю.
1. Характеристики двигателя должны обеспечивать:
- высокий уровень крутящего момента (3 кНм и более для долот диаметрами 215 - 243 мм);
- частоту вращения выходного вала в диапазоне 100 - 200 и 500 - 800 об/мин соответственно для шарошечных и алмазных долот;
- высокий КПД двигателя для эффективного использования гидравлической мощности насосов;
- пропорциональную зависимость между расходом бурового раствора и частотой вращения, а также между крутящим моментом и перепадом давления с целью эффективного управления режимом бурения.
2. Рабочие органы и другие узлы двигателя должны быть выполнены в износо- и термостойком исполнении, обеспечивающем использование бурового раствора любой плотности и вязкости, в том числе с содержанием тампонирующих материалов.
3. Конструктивная компоновка двигателя и проектные запасы прочности его узлов должны обеспечивать:
стойкость двигателя, достаточную для стабильной работы с современными шарошечными и алмазными долотами;
возможность искривления корпуса двигателя при наклонно направленном бурении;
возможность установки на корпусе двигателя опорно-центрирующих элементов при проводке наклонно направленных и горизонтальных скважин.
4. Диаметральные и осевые размеры двигателя должны обеспечивать:
проведение буровых работ долотами различного диаметра, включая малогабаритными;
эффективную проводку наклонно направленных и горизонтальных скважин;
использование стандартного ловильного инструмента.
Анализ конструкций и характеристик забойных гидравлических двигателей различного типа показывает, что в большей степени указанным требованиям соответствуют ВЗД с многозаходными винтами.
Принцип действия ВЗД
Винтовые двигатели относятся к объемным роторным гидравлическим машинам.
Согласно общей теории винтовых роторных гидравлических машин элементами рабочих органов (РО) являются:
1) статор двигателя с полостями, примыкающими по концам к камерам высокого и низкого давления;
ротор-винт, носящий название ведущего, через который крутящий момент передается исполнительному механизму;
замыкатели-винты, носящие название ведомых, назначение которых уплотнять двигатель, т.е. препятствовать перетеканию жидкости из камеры высокого давления в камеру низкого давления.
1 - корпус; 2 - ротор; 3 - вал; 4, 5 - осевой и радиальный подшипники; 6 - долото
В одновинтовых гидромашинах используются механизмы, в которых замыкатель образуется лишь двумя деталями, находящимися в постоянном взаимодействии, - статором и ротором.
При циркуляции жидкости через РО в результате действия перепада давления на роторе двигателя создается крутящий момент, причем винтовые поверхности РО, взаимно замыкаясь, разобщают области высокого и низкого давления. Следовательно, по принципу действия винтовые двигатели аналогично поршневым, у которых имеется винтообразный поршень, непрерывно перемещающийся в цилиндре вдоль оси двигателя.
Для создания в РО двигателя полостей, теоретически разобщенных от областей высокого и низкого давления (шлюзов), необходимо и достаточно выполнение четырех условий (рис. 16.2):
1) число зубьев zl наружного элемента (статора) должно быть на единицу больше числа зубьев z2 внутреннего элемента (ротора):
Рис. 16.2. Рабочие органы ВЗД на продольном и поперечном разрезах
z1 = z2 + 1;
отношение шагов винтовых поверхностей наружного элемента (статора) Т и внутреннего элемента (ротора) t должно быть пропорционально отношению числа зубьев:
T/t =z/z2;
длина рабочего органа L должна быть не менее шага винтовой поверхности наружного элемента: L ≥ Т;
профили зубьев наружного и внутреннего элементов должны быть взаимоогибаемы и находиться в непрерывном контакте между собой в любой фазе движения.
Отличительным параметром ВЗД, во многом определяющим его выходные характеристики, является отношение чисел зубьев рабочих органов, называемое кинематическим отношением i:
i = z2 : z1.
Кратность действия, зависящая от кинематического отношения РО, равна числу заходов внутреннего элемента z и определяет рабочий объем ВЗД:
V = z2 ST,
где S - площадь живого сечения РО.
Кратность действия является основным параметром ВЗД, что наглядно иллюстрируется теоретическими кривыми (рис. 16.3), полученными во ВНИИБТ в 1972 г. и в дальнейшем повсеместно используемыми при обоснований выбора рабочего органа ВЗД.
Отечественные ВЗД имеют многозаходные РО. Зарубежные компании производят двигатели, как с однозаходным ротором, так и с многозаходными РО.
Рис. 16.3. Зависимость момента и частоты вращения ВЗД от кинематического отношения рабочих элементов
Основные типы и размеры ВЗД
В настоящее время в России в серийном и опытном производстве находится уже более 32 типоразмеров ВЗД.
Двигатели универсального применения. Отечественные двигатели этой модификации охватывают диапазон наружных диаметров от 127 до 240 мм и предназначены для привода долот диаметром 139,7 - 295,3 мм (табл. 16.1).
Отечественные двигатели создавались на основе многолетнего опыта конструирования турбобуров, и в них использовались апробированные конструкции опорных узлов шпиндельной секции, резьбовых соединений, элементов соединения валов и др.
В то же время специфические узлы и детали двигателей (РО, соединение ротора и выходного вала, переливной клапан) не имеют аналогов и разрабатывались по результатам проведенных теоретических и экспериментальных исследований.
Выпускаемые в России и за рубежом ВЗД выполняются по единой схеме и имеют неподвижный статор и планетарно-вращающийся ротор.
На рис. 16.4 показано устройство двигателя модели ДЗ-172 в продольном и поперечном разрезах. Это типичная конструкция двигателя. Двигатель состоит из двух секций: силовой и шпиндельной.
Корпусные детали секций соединяются между собой замковыми резьбами, а валы - с помощью конусных, конусно-шлицевых или резьбовых соединений. Третий узел двигателя - переливной клапан, как правило, размещается в авто номном переводнике непосредственно над двигателем или между трубами бурильной колонны.
Таблица 16.1
Винтовые забойные двигатели для бурения скважин и капитального ремонта (второе поколение двигателей - 80-е годы)
Обозначение двигателя |
Диаметр, мм |
Длина, мм |
Шаг статора мм |
Число шагов |
Расход жидкости, л/с |
Крутящий момент, Нм |
Частота вращения, с-1 |
Перепад давления МПа |
Д1-54 Д1-88 Д1-127 Д3-172 Д2-195 Д1-240 |
54 88 127 172 195 240 |
1890 3225 5800 6880 6550 7570 |
222 390 650 850 850 880 |
2 2 2 2 2 3 |
1,0-2,5 4,5-7,0 15-20 25-35 25-35 30-50 |
70-110 800-950 2200-3000 3100-3700 3100-3700 10000-14000 |
3,0-7,5 2,7-5,0 3,3-4,3 1,3-1,8 1,3-1,8 1,2-2,2 |
4,5- 5,5 5,8-7,0 5,5-8,5 3,9-4,9 3,9-4,9 6,0-8,0 |
Рис.
16.4. Винтовой забойный двигатель ДЗ-172:
1
- статор; 2
- ротор;
3
- гибкий
вал; 4,
5- корпусные
подшипники; 6 - корпус; 7 - вал; 8,
9 - осевая
и радиальная опоры; 10
- наддолотный
переводник
Шпиндельная секция состоит из корпуса 6, вала 7 с осевыми 8 и радиальными 9 опорами, наддолотного переводника 10.
Двигатели для наклонно направленного и горизонтального бурения. Эта серия представлена двигателями с наружными диаметрами от 60 до 172 мм и предназначена для бурения наклонно направленных (с большой интенсивностью искривления) и горизонтальных скважин.
Обладая конструктивными особенностями и рациональным критерием эффективности М/n, двигатели этой серии в отличие от турбобуров эффективно используются в различных технологиях наклонно направленного и горизонтального бурения, в том числе при зарезке и бурении вторых (дополнительных) стволов через окно в эксплуатационной колонне.
При использовании ВЗД в горизонтальном бурении реализуются их преимущества по сравнению с турбобурами, в частности меньшая зависимость от диаметра, а также повышенный удельный момент двигателя. Это позволяет сконструировать силовую секцию длиной 1 - 2 м с наружным диаметром, существенно меньшим, чем у турбобура для аналогичных целей.
В результате проведенных в 90-х годах НИОКР ВНИИБТ создана новая серия забойных двигателей типа ДГ диаметром 60-172 мм (табл. 16.2) для проводки новых горизонтальных скважин и бурения дополнительных стволов.
При проектировании этой серии двигателей использовался 25-летний опыт конструирования ВЗД общего назначения и в то же время учитывались требования технологии горизонтального бурения.
Основные особенности двигателей серии ДГ:
уменьшенная длина, достигаемая сокращением как силовой, так и шпиндельной секции, причем силовая секция, как правило, выполняется двухшаговой, что обеспечивает необходимую мощность и ресурс РО;
уменьшенный наружный диаметр (108 мм против 120 мм; 155 мм против 172 мм), что при сохранении оптимальных характеристик ВЗД обеспечивает надежную проходимость двигателя с опорно-центрирующими элементами в стволе скважины и улучшенную гидродинамическую ситуацию в затрубном пространстве;
многообразие механизмов искривления корпуса (жесткий искривленный, регулируемый переводники, корпусные шарниры с одной или двумя ступенями свободы), что позволяет использовать различные технологии проводки скважин;
возможность размещения на корпусе двигателя опорно-центрирующих элементов;
усовершенствованное соединение ротора и вала шпинделя, гарантирующее надежную работу с большими углами перекоса.
Двигатели для ремонта скважин. Двигатели, применяемые в ремонте нефтяных и газовых скважин, выпускаются под шифром Д с наружным диаметром 108 мм и менее.
Диапазон наружных диаметров, конструкции двигателей, а также их характеристики позволяют использовать эти машины для всевозможных буровых работ, встречающихся в ремонте скважин.
ВЗД используются при разбуривании цементных мостов, песчаных и гидратных пробок, фрезеровании труб, кабелей электропогружных насосов и прочих предметов. Эти двигатели могут производить бурение как внутри насосно-компрессорных труб, так и внутри эксплуатационной колонны.
При проведении капитального ремонта внутри колонн может использоваться также двигатель Д1-127. По своей конструкции ВЗД для ремонта скважин принципиально не отличаются от двигателей общего назначения.
Наибольший интерес представляет многофункциональный двигатель ДК-108, разработанный ВНИИБТ. Особенность созданного двигателя - широкий диапазон его энергетических параметров, обеспечивающийся наличием в его комплекте трех модификаций рабочих органов с различными рабочими объемами, что позволяет использовать эти машины для самых разнообразных видов ремонтно-восстановительных работ при капитальном ремонте скважин.
Элементы конструкций двигателей и их компоновок
Несмотря на многообразие типоразмеров винтовых двигателей их рабочие органы имеют общие особенности:
РО выполняются по одной кинематической схеме: неподвижный статор и находящийся внутри него планетарно движущийся ротор;
направление винтовой поверхности РО - левое, что обеспечивает заворачивание реактивным моментом корпусных резьб ВЗД и резьб бурильных труб;
в зависимости от заданных характеристик двигателя РО выполняются как с однозаходным, так и многозаходным роторами;
роторы изготавливаются из нержавеющей или легированной стали с износостойким покрытием, а обкладка статора - из эластомера (преимущественно резины), обладающего сопротивляемостью абразивному изнашиванию и работоспособностью в среде бурового раствора.
В отечественных двигателях первого поколения (Д1-172, Д2-172, Д2-172 м), выпускаемых в 70-х годах, РО имели незначительную длину, не превышающую 1 - 1,5 шага винтовой поверхности статора. В двигателях второго поколения, выпускаемых с начала 80-х годов, длина РО составляет 2 - 3 шага статора. Наиболее перспективна монолитная конструкция РО, обеспечивающая простоту и малодетальность машин.
Рабочие органы ВЗД комплектуются с натягом. Величина натяга зависит от диаметральных и осевых размеров РО, свойств промывочной жидкости и материала обкладки статора и оказывает существенное влияние на характеристики и долговечность двигателя.
Все отечественные винтовые двигатели, начиная с первых образцов, выпускаются в шпиндельном исполнении.
Под термином "шпиндель" подразумевается автономный узел двигателя с выходным валом с осевыми и радиальными подшипниками. В большинстве случаев шпиндель может быть отсоединен без демонтажа силовой секции, при необходимости и на буровой.
Шпиндели отечественных ВЗД выполняются немаслонаполненными. Все узлы трения смазываются и охлаждаются буровым раствором. Отказ от использования маслонаполненных и герметизированных шпинделей объясняется как традиционным подходом конструирования забойных двигателей, так и практической целесообразностью иметь гидромашину, обладающую примерно равным ресурсом отдельных узлов.
Шпиндель - один из главных узлов двигателя. Он передает осевую нагрузку на породоразрушающий инструмент, воспринимает реакцию забоя и гидравлическую осевую нагрузку, действующую в РО, а также радиальные нагрузки от долот и шарнирного соединения (гибкого вала).
В ряде случаев при использовании породоразрушающих инструментов с насадками (гидромониторное бурение) шпиндель должен выполнять функции уплотнения выходного вала, позволяя создавать необходимый перепад давления в насадках долота.
Наиболее распространенная конструкция шпинделя включает монолитный полый вал, соединенный посредством наддолотного переводника в нижней части с долотом, а с помощью муфты в верхней части - с шарниром.
Для восприятия осевых нагрузок используются как радиально-упорные, так и упорные подшипники. Подшипники выполняются многорядными и сохраняют свою работоспособность при выработке зазора (люфта) до 5 -7 мм.
В отечественных двигателях применяются радиально-упорные подшипники качения:
с коническими дорожками качения, используемые в двигателях с наружными диаметрами 105, 108, 195 и 240 мм;
с тороидными дорожками качения, используемые в двигателях с наружными диаметрами 85, 88 и 127 мм;
с тороидными дорожками качения и резиновым компенсатором типа ШШО, используемые в некоторых модификациях двигателей диаметром 172 мм;
с комбинированными дорожками качения, используемые в двигателях Д-48, Д1-54, ДГ-95, ДГ-108 (для увеличения нагрузочной способности при одновременном упрощении конструкции тороидные дорожки для шаров этих опор расположены непосредственно на валу).
Детали подшипников качения выполняются из специальной подшипниковой стали 55СМА или 55СМА5ФА (ТУ 14-1-3189 - 81) с пределом текучести 1100 МПа и ударной вязкостью а = 800 кДж/м2. Твердость колец, контактирующих с шарами - 45-47 HRC, а шаров - 58-62 HRC.
В некоторых моделях ВЗД используются непроточные многорядные подшипники скольжения (подпятник - диск). Выбор типа осевых подшипников зависит от условий эксплуатации ВЗД.
Многолетние стендовые и промысловые испытания подтвердили преимущества упорных подшипников скольжения при эксплуатации двигателей в абразивной среде и при высоких нагрузках. Недостаток подшипников скольжения - повышенные механические потери, особенно при невысоких частотах вращения.
В подпятниках используется резина марки ИРП-1226, а рабочие поверхности контактирующих с ними дисков выполняются из цементируемой стали, закаленной до твердости 45-48 HRC.
Радиальные подшипники шпинделя в большинстве случаев представлены парой трения скольжения резина - металл. Неподвижный элемент выполняется в виде резинометаллической детали, на рабочей эластичной поверхности которой выполнены профильные канавки. Ответная деталь - металлическая, ее рабочая поверхность подвержена упрочнению.
В двигателях для наклонно направленного и горизонтального бурения радиальные подшипники выполняются в виде пары трения металл - металл. Однако из-за повышенных радиальных нагрузок, присущих ВЗД этого класса (вследствие действия отклоняющей силы на долоте), данный узел являетсяодним из самых недолговечных, определяющих межремонтный период двигателя в целом.
Соединение ротора ВЗД и вала шпинделя представляет собой один из основных узлов двигателя, определяющих долговечность и надежность гидромашины в целом.
Механизм, соединяющий планетарно движущийся ротор с концентрично вращающимся валом, работает в тяжелых условиях. Помимо передачи крутящего момента и осевой силы, этот узел должен воспринимать сложную систему сил в РО, характеризующуюся непостоянной ориентацией ротора.
В отличие от известных в технике соединений, передающих вращение между двумя насосными концентрическими вращающимися валами, рассматриваемое соединение в ВЗД является связующим звеном с ротором, совершающим планетарное движение, причем за один оборот выходного вала ротор z1 раз поворачивается вокруг своей оси, соответственно совершая z1 циклов переменных напряжений.
Это обусловливает повышенные требования к циклической прочности соединения, особенно при использовании многозаходных ВЗД.
Своеобразные условия работы соединения и невозможность использования готового технического решения обусловили многообразие компоновок этого узла. Принципиально могут быть использованы четыре типа соединений на базе:
шарнирных соединений;
гибкого вала;
деформации одного или нескольких элементов конструкции;
обеспечения свободы перемещения ротора за счет введения элементов с относительно большим люфтом.
Первый и второй типы соединения ввиду существенных удельных нагрузок в ВЗД не нашли применения.
Шарнирные соединения. Шарнирные соединения ВЗД прошли эволюцию от пальцевых шарниров (аналогичных автомобильным) до специальных конструкций, наиболее приспособленных для передачи динамических осевой нагрузки и крутящего момента.
В первом поколении отечественных ВЗД применялись двухшарнирные соединения зубчатого типа с центральным шаром. Оно использовалось для передачи крутящих моментов до 7000 Нм при частоте вращения до 200 об/мин. Эксцентриситет соединения доходил до 5 мм. Шарнирные соединения ВЗД работают, как правило, в среде абразивных жидкостей. Поэтому надежная герметизация шарниров является одним из основных направлений повышения их работоспособности. Проблема герметизации осложняется тем, что полости, которые требуется изолировать, вращаются вокруг смещенных осей в условиях вибрации и значительного гидростатического давления. Поэтому герметизирующие элементы должны быть гибкими и прочными при циклической нагрузке, а устройство для герметизации в целом простым и надежным.
Сначала в шарнирах использовались простейшие резиновые уплотнения, в дальнейшем стали применять уплотнения сильфонного и манжетного типов (рис. 16.5).
Гибкие валы. Существенный шаг, оказавший влияние на подходы к конструированию ВЗД в целом, был сделан в середине 70-х годов, когда ВНИИБТ выполнил комплекс научно-исследовательских работ и впервые в практике проектирования ВЗД предложил конструкцию гибкого вала, защищенную патентами.
К началу 90-х годов в большинстве типоразмеров ВЗД, выпускаемых в России, для соединения ротора и выходного вала применяются гибкие валы. В двигателях с наружным диаметром 88 мм и более гибкий вал размещается в расточке ротора, а в малогабаритных двигателях - ниже ротора.
В большинстве случаев гибкий вал ВЗД представляет собой металлический стержень круглого сечения с утолщенными концами. На концах выполняются присоединительные элементы: гладкий конус или коническая резьба. Иногда гибкий вал выполняется полым со сквозным цилиндрическим каналом для подвода рабочей жидкости высокого давления непосредственно к долоту. Для повышения циклической прочности в месте перехода от заделки к рабочей части вала имеется конус с углом 5-15° или галтель.
Типичные конструкции гибких валов приведены на рис. 16.6.
Рис.
16.5. Уплотнения для ВЗД 410
Рис. 16.6. Гибкий вал ВЗД
Опыт эксплуатации двигателей в наклонно направленном и горизонтальном бурении выявил недостаточную стойкость гибких валов при углах перекоса секций более 1°30'. В связи с этим в последних конструкциях двигатели типа ДГ стали оснащать шарнирно-торсионными соединениями.
Характеристики ВЗД
Характеристики ВЗД необходимы для выбора оптимальных параметров режима бурения и поддержания их в процессе долбления, а также для определения путей дальнейшего совершенствования конструкций ВЗД и технологии бурения с их использованием.
В последнее время внимание к характеристикам ВЗД все более повышается. Это связано с внедрением регулируемых приводов буровых насосов, для эффективного использования которых знание характеристик гидромашины становится непременным условием; распространением новых технологий (наклонно направленное и горизонтальное бурение, бурение с использованием непрерывных труб), особенно чувствительных к изменению режимов работы ВЗД.
Современные программы бурения ведущих зарубежных фирм предусматривают стендовые испытания каждого гидродвигателя с целью получения их фактических характеристик. Несмотря на дополнительные затраты, это позволяет наиболее эффективно использовать ВЗД, в частности, косвенно по давлению на стояке контролировать нагрузку на долото, что в конечном счете приводит к улучшению технико-экономических показателей процесса бурения. В России стендовые испытания также стали проводить заводы - изготовители двигателей.
В общем случае различают статические и динамические характеристики ВЗД.
Статические характеристики отражают зависимость между переменными гидродвигателя в установившихся режимах.
Динамические характеристики определяют соответствующие зависимости в неустановившихся режимах и обусловливаются инерционностью происходящих процессов. К динамическим относятся и пусковые характеристики гидродвигателя.
Статические характеристики ВЗД можно условно классифицировать как стендовые и нагрузочные. Стендовые характеристики (как функции от крутящего момента) определяются в результате испытаний гидродвигателя. Нагрузочные характеристики (как функции от осевой нагрузки) чаще всего рассчитываются по стендовым для конкретных условий бурения.
Типичные стендовые характеристики винтового двигателя представлены на рис. 16.7. По мере роста момента М перепад давления р увеличивается практически линейно, а частота вращения п снижается вначале незначительно, а при приближении к тормозному режиму - резко. Кривые мощности N и общего КПД η имеют экстремальный характер.
Рис.
16.7. Типовая стендовая характеристика
ВЗД (ДГ-155)
Рабочий режим ВЗД принимается соответствующим экстремальному (паспортные данные двигателя приводятся для данного режима) или режиму максимально допустимого перепада давлений (ограниченного объемным КПД или контактными напряжениями в паре). Некоторые фирмы в своих каталогах приводят конкретные значения допускаемого р.
Оптимальный режим смещен влево по отношению к экстремальному, т.е. наступает при меньших значениях крутящего момента. Как правило, экстремальный режим, соответствующий условиям наиболее эффективного разрушения горных пород, расположен рядом с границей зоны устойчивой работы ВЗД, при достижении которой дальнейшее увеличение нагрузки приводит к торможению двигателя.