
- •3 Масообмінні процеси
- •3.1 Основи масопередачі. Загальні відомості
- •3.1.1 Види процесів масопередачі
- •3.1.2 Фізична суть процесів масопередачі
- •3.1.3 Основні визначення
- •3.1.4 Основне рівняння масопередачі
- •3.1.5 Способи вираження концентрацій бінарних сумішей
- •3.1.6 Рівновага при масопередачі
- •3.1.6.1 Правило фаз
- •3.1.6.2 Криві рівноваги
- •3.1.6.3 Закон Генрі
- •3.1.6.5 Закон Рауля
- •3.1.7 Матеріальний баланс процесів масообміну.
- •3.1.7.1 Робоча лінія
- •3.1.7.2 Графічне зображення процесу. Напрямок процесу переносу
- •3.1.8 Механізм процесу масопередачі
- •3. 1.9 Молекулярна дифузія. Перший закон Фіка
- •3.1.9.2 Турбулентна дифузія.
- •3.1.9.2 Перенос енергії в турбулентному потоці
- •3.1.9.3 Перенос маси в турбулентному потоці
- •3.1.10 Конвективна дифузія
- •3.1.11 Диференційні рівняння масопередачі
- •3.1.11.1 Диференційне рівняння молекулярної дифузії
- •3.11.2 Диференціальне рівняння конвективної дифузії. Другий закон Фіка
- •3.1.11.3 Основний закон масовіддачі. Основний закон конвективної дифузії
- •3.1.12 Рівняння на межі розділу фаз
- •3.1.13 Математичний опис процесу масопередачі
- •3.1.14 Загальний розв'язок основного рівняння масопередачі
- •3.1.15 Рушійна сила масообмінних процесів
- •3.1.15.1 Визначення середньої рушійної сили для випадку, коли лінія рівноваги пряма
- •3.1.15.2 Визначення Yср для випадку, коли лінія рівноваги крива
- •3.1.16 Вплив перемішування на середню рушійну силу δYср і δХср
- •3.1.18 Об'ємні коефіцієнти масовіддачі і масопередачі
- •3.1.19 Подібність процесів масопереносу
- •3.1.20 Перетворення основного рівняння масопередачі для насадкових апаратів.
- •31.21 Визначення числа одиниць переносу
- •3.1.21.1 Визначення числа одиниць переносу для випадку, коли лінія рівноваги пряма
- •3.1.21.2 Визначення числа одиниць переносу для випадку, коли лінія рівноваги крива
- •3.1.22 Визначення висоти одиниці переносу
- •3.1.23 Основи розрахунку масообмінних апаратів.
- •3.1.23.1 Розрахунок діаметра колони
- •3.1.23.2 Визначення швидкості газу в насадкових апаратах
- •Загальна структура формули розрахунку лінійної швидкості газу в точці захлинання має вигляд:
- •1.22.3 Швидкість потоку в тарільчатих апаратах.
- •3.1.23.4 Розрахунок висоти апарата
- •3.1.23.5 Визначення числа ступенів зміни концентрації (числа теоретичних тарілок)
- •3.1.23.6 Розрахунок числа дійсних тарілок за кінетичною кривою
- •3.1.23.7 Визначення відстані між тарілками
- •3.1.23.9 Гідравлічний опір тарільчатої колони
- •3.1.24 Методика розрахунку насадкового масообмінного апарата
- •3.1.25 Методика розрахунку тарільчатого масообмінного апарата
- •3.1.26 Масопередача в системах з твердою фазою
3 Масообмінні процеси
3.1 Основи масопередачі. Загальні відомості
Технологічні процеси, швидкість перебігу яких визначається швидкістю переносу речовини із однієї фази до іншої називають масообмінними процесами, а апарати, призначені для проведення цих процесів – масообмінними апаратами.
3.1.1 Види процесів масопередачі
1. Абсорбція – поглинання газу рідиною, характеризує перехід речовини з газової фази в рідку. Зворотній процес виділення газу з рідини називається десорбція.
2. Ректифікація – розділення гомогенних рідких сумішей, які відрізняються температурою кипіння, багаторазового взаємного обміну компонентами між рідкою і паровою фазами, що рухають протитечії.
3. Адсорбція – поглинання компоненту газу, пари, або розчину твердим пористим поглиначем.
4. Екстракція – вилучення речовини з твердого тіла або рідини розчинником, до якого переходить вилучена речовина.
5. Кристалізація – виділення твердої фази з розчинів або розплавів.
6. Розчинення – перехід твердої фази до рідкої.
3.1.2 Фізична суть процесів масопередачі
У макроскопічній системі, яка знаходиться у нерівноважному стані, виникають термодинамічні потоки.
Термодинамічні потоки, пов’язані з переносом речовини чи енергії імпульсу з однієї частини середовища в іншу, виникають у випадку, якщо значення тих чи інших фізичних параметрів різні в різних точках середовища. При наявності в середовищі різної концентрації якої-небудь домішки виникають дифузійні потоки, у випадку різної температури – теплові потоки, при різній швидкості плину – потоки імпульсу, чи кількості руху. У першому випадку говорять про явище дифузії, в другому – про явище теплопровідності, в третьому – про явище в’язкості.
Дифузією називається процес мимовільного вирівнювання концентрацій речовин у сумішах, яка спостерігається в різних середовищах, але її швидкість сильно залежить від агрегатного стану речовини. У газах це явище відбувається досить швидко, що можна, зокрема, спостерігати по тому, як відбувається поширення запахів у повітрі. У рідинах явище дифузії відбувається значно повільніше і виявляється, наприклад, при розчиненні в них твердих тіл чи при взаємному змішуванні різних рідин. Для спостереження дифузії у твердих тілах звичайно необхідний дуже великий час.
Процеси переходу речовини з однієї фази до іншої здійснюються за рахунок конвективної і молекулярної дифузій в напрямку досягнення рівноваги. Ці процеси відбуваються в роздільній апаратурі за такою схемою:
Рис.
3.1 Структурний зв’язок реактора з
масообмінним апаратом.
Метою даного розділу курсу є вивчення фізичних і технологічних засад в апараті розділення (масообмінний апарат) і аналіз конструктивних особливостей цих апаратів, розгляд підходів щодо їх технологічного та конструктивного розрахунку.
Розрахунок масообмінних апаратів ґрунтується на механізмі переносу маси речовини, для чого необхідно знати:
основні закони розподілення компонентів;
робочі режими процесу;
кінетику процесу дифузії.
Розв’язок такої задачі ґрунтується на відповідній математичній моделі, яка враховує всі сторони процесу і ґрунтується на:
рівнянні матеріального балансу;
рівнянні рівноваги;
рівнянні гідродинаміки потоків;
рівнянні кінетики процесу;
рівняннях граничних і початкових умов.