
- •1. Химический состав Земли. Вещественный состав земной коры.
- •2. Геохронология и ее методы. Абсолютная геохронология. Относительная геохронология.
- •3. Понятие об эндогенных и экзогенных процессах. Примеры с использованием геоинформатики
- •5. Цели и задачи гИтехнологий и их связь с другими науками
- •6. История развития вычислительной техники и геоинформатики
- •Программное обеспечение: основные понятия и классификация
- •Основные этапы создания программного средства и программы быстрой разработки
- •Основные типы алгоритмов
- •Основные типы и структуры данных
- •Виды языков программирования
- •Структурное программирование. Основные понятия
- •13. Объектно-ориентированное программирование: основные понятия
- •1 4. Устройства ввода и вывода информации
- •15.Векторная форма представления графической информации. Форматы файлов. Преимущества и недостатки
- •16. Растровая форма представления графической информации. Форматы файлов. Преимущества и недостатки
- •17. Графические редакторы
- •18. Преобразование видов графики (векторизация и растеризация)
- •19. Основы программирования графики
- •20. Математические основы работы с графикой. Аффинные и полиномиальные преобразования
- •22. Роль и место баз данных в информационных системах
- •23. Виды и структура бд
- •24.Основные этапы формирования бд
- •25. Требования, предъявляемые к бд
- •26. Аномальность и избыточность бд. Основные нормальные формы таблиц
- •27. Терминология и структура языка sql
- •Основные категории команд языка sql:
- •Описание наиболее часто используемых команд каждой группы
- •28. Создание приложений, работающих с бд в режиме запросов (на примере Delphi)
- •29. Аппаратная среда мультимедиа технологий
- •30. Форматы файлов, использующихся в мультимедиа технологиях
- •31. Этапы и технология создания мультимедиа продукции
- •32. Структура микропроцессора
- •33. Память эвм
- •34. Основы ассемблера ibm-совместимого процессора эвм
- •36. Операционные системы
- •48. Основные понятия теории моделирования систем
- •50. Основные подходы к построению математических моделей систем
- •51. Этапы машинного моделирования систем
- •52. Статистическое моделирование
- •53. Планирование экспериментов с моделями систем
- •54. Понятие информационной системы
- •55. Открытые информационные системы: терминология и структура вос
- •57. Информационный рынок и место гис на нем
- •58. Технология ole
- •59. Технология dll
- •60. Создание визуальных компонентов (на примере Delphi)
- •67. Языки программирования, применяемые в Интернет
- •68. Сетевые операционные системы
- •69. Основные модели представления знаний предметной области в базе знаний
- •70. Экспертные системы: основные понятия и их применение в геоинформатике
- •71. Основы нейронных сетей
- •72.Аспекты извлечения знаний
- •73. Метод извлечения знаний
- •74. Определение и классификация архитектур ис
- •Жизненные циклы проектирования ис
- •Автоматизация процесса проектирования ис
- •Модели и диаграммы, используемые при проектировании ис
- •Стадии геолого-геофизических работ и применяемые средства и устройства
- •Принципы комплексирования геофизических методов
- •1. Принципы коррелируемости.
- •Принцип суперпозиции.
- •3.1. Качественная интерпретация при комплексировании геофизических методов.
- •3.2. Принципы количественной интерпретации комплексных геофизических данных.
- •80.Петрофизические и физико-геологоические модели в геоинформатике
- •81.Прямая и обратная задачи в прикладной геофизике.
31. Этапы и технология создания мультимедиа продукции
Мультимедиа продукт требует, как правило, участия в разработке группы специалистов. Менеджер проекта ведет переговоры с заказчиком и является организующим звеном разработки. Подготовка видео и фотоматериалов, их обработка в соответствующих программах требует определенных специфических знаний и навыков, и этим занимаются специалисты-фотохудожники. Дизайнер выбирает художественную метафору проекта и реализует графику, выполняет дизайн-проект будущего продукта. Программист пишет код в выбранном инструментарии для разработки. Часто отдельной заботой является создание трехмерных моделей, соответствующие специалисты выполняют эту часть работы. Анимация требует получения векторного изображения объекта и описания его динамики. Наложение музыки, звуковых эффектов – еще одна задача и еще один круг участников. Разумеется, в несложных проектах разработчик может совмещать все эти функции в очень небольшом коллективе, однако по-настоящему крупная разработка в специализированных компаниях выполняется полноценной группой специалистов.
Итак, разработка мультимедийного продукта выполняется по следующей схеме.
1. Встреча главного менеджера проекта с заказчиком, определение требований к проекту
2. Выявление целей, задач, целевой аудитории
3. Оформление технического задания
4. Формирование рабочей группы
5. Разработка дизайн проекта
6. Подготовка и предварительная обработка фото, графики, видеоматериалов
7. Настройка спецэффектов
8. Создание 3D-объектов
9. Разработка компонентов анимации
10. Выбор компонентов звукового оформления
11. Проектирование внутренней структуры презентации
12. Выбор парадигмы и средств программирования
13. Сборка, компиляция всего проекта, отладка
14. Запись на внешнем носителе
15. Сдача заказчику
16. Тиражирование продукта
32. Структура микропроцессора
микропроцессор (МП) - это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.
Микропроцессор, иначе, центральный процессор - Central Processing Unit (CPU) - функционально законченное программно-управляемое устройство обработки информации, выполненное в виде одной или нескольких больших (БИС) или сверхбольших (СБИС) интегральных схем. Физически микропроцессор представляет собой интегральную схему — тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора.В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называются многопроцессорными.
Микропроцессор характеризуется:
1) тактовой частотой, определяющей максимальное время выполнения переключения элементов в ЭВМ;
2) разрядностью, т.е. максимальным числом одновременно обрабатываемых двоичных разрядов.
Разрядностть МП обозначается m/n/k/ и включает:
m - разрядность внутренних регистров, определяет принадлежность к тому или иному классу процессоров;
n - разрядность шины данных, определяет скорость передачи информации;
k - разрядность шины адреса, определяет размер адресного пространства. Например, МП i8088 характеризуется значениями m/n/k=16/8/20;
3) архитектурой. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы.
Процессор — основная микросхема компьютера, в которой и производятся все вычисления [3, с.80]. Собственно говоря, процессор в компьютере не один — их может быть целый десяток! Собственным процессором снабжена видеоплата, звуковая плата, множество внешних устройств (например, принтер). И часто по производительности эти микросхемы могут поспорить с главным, Центральным Процессором. Но в отличие от него, все они являются узкими специалистами — один отвечает за обработку звука, другой — за создание трехмерного изображения.
Основное и главное отличие центрального процессора — это его универсальность. При желании (и, разумеется, при наличии необходимой мощности и соответствующего программного обеспечения) центральный процессор может взять на себя любую работу, в то время как процессор видеоплаты при всем желании не сможет раскодировать, скажем, музыкальный файл...
В состав микропроцессора входят следующие устройства:
1. Арифметико-логическое устройство предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.
2. Устройство управления координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:
• формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;
• формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;
• получает от генератора тактовых импульсов обратную последовательность импульсов.
3. Микропроцессорная память предназначена для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.
4. Кэш-память. Буферная память — своеобразный накопитель для данных. В современных процессорах используется два типа кэш-памяти: первого уровня — небольшая (несколько десятков килобайт) сверхбыстрая память, и второго уровня — чуть помедленнее, зато больше — от 128 килобайт до 2 Мб [4, с.38].
5. Процессор связан несколькими группами проводников называемых шинами. С остальными устройствами компьютера, и в первую очередь с оперативной памятью. Основных шин три: шина данных, адресная шина и командная шина.
1. Адресная шина. Шина или часть шины, предназначенная для передачи адреса, а именно используется ЦП для выбора требуемой ячейки памяти или устройства ввода-вывода путем установки на шине конкретного адреса, соответствующего одной из ячеек памяти или одного из элементов ввода-вывода, входящих в систему.
2. Шина команд. По ней передаются управляющие сигналы, предназначенные памяти и устройствам ввода-вывода. Эти сигналы указывают направление передачи данных (в процессор или из него).
3. Шина данных — информационная магистраль, благодаря которой процессор может обмениваться данными с другими устройствами компьютера
Трудно поверить, что все эти устройства размешаются на кристалле площадью не более 4—6 квадратных сантиметров! Только под микроскопом мы можем разглядеть крохотные элементы, из которых состоит микропроцессор, соединяющие их металлические «дорожки» (для их изготовления сегодня используется алюминий, однако уже приходит медь)