
- •1. Химический состав Земли. Вещественный состав земной коры.
- •2. Геохронология и ее методы. Абсолютная геохронология. Относительная геохронология.
- •3. Понятие об эндогенных и экзогенных процессах. Примеры с использованием геоинформатики
- •5. Цели и задачи гИтехнологий и их связь с другими науками
- •6. История развития вычислительной техники и геоинформатики
- •Программное обеспечение: основные понятия и классификация
- •Основные этапы создания программного средства и программы быстрой разработки
- •Основные типы алгоритмов
- •Основные типы и структуры данных
- •Виды языков программирования
- •Структурное программирование. Основные понятия
- •13. Объектно-ориентированное программирование: основные понятия
- •1 4. Устройства ввода и вывода информации
- •15.Векторная форма представления графической информации. Форматы файлов. Преимущества и недостатки
- •16. Растровая форма представления графической информации. Форматы файлов. Преимущества и недостатки
- •17. Графические редакторы
- •18. Преобразование видов графики (векторизация и растеризация)
- •19. Основы программирования графики
- •20. Математические основы работы с графикой. Аффинные и полиномиальные преобразования
- •22. Роль и место баз данных в информационных системах
- •23. Виды и структура бд
- •24.Основные этапы формирования бд
- •25. Требования, предъявляемые к бд
- •26. Аномальность и избыточность бд. Основные нормальные формы таблиц
- •27. Терминология и структура языка sql
- •Основные категории команд языка sql:
- •Описание наиболее часто используемых команд каждой группы
- •28. Создание приложений, работающих с бд в режиме запросов (на примере Delphi)
- •29. Аппаратная среда мультимедиа технологий
- •30. Форматы файлов, использующихся в мультимедиа технологиях
- •31. Этапы и технология создания мультимедиа продукции
- •32. Структура микропроцессора
- •33. Память эвм
- •34. Основы ассемблера ibm-совместимого процессора эвм
- •36. Операционные системы
- •48. Основные понятия теории моделирования систем
- •50. Основные подходы к построению математических моделей систем
- •51. Этапы машинного моделирования систем
- •52. Статистическое моделирование
- •53. Планирование экспериментов с моделями систем
- •54. Понятие информационной системы
- •55. Открытые информационные системы: терминология и структура вос
- •57. Информационный рынок и место гис на нем
- •58. Технология ole
- •59. Технология dll
- •60. Создание визуальных компонентов (на примере Delphi)
- •67. Языки программирования, применяемые в Интернет
- •68. Сетевые операционные системы
- •69. Основные модели представления знаний предметной области в базе знаний
- •70. Экспертные системы: основные понятия и их применение в геоинформатике
- •71. Основы нейронных сетей
- •72.Аспекты извлечения знаний
- •73. Метод извлечения знаний
- •74. Определение и классификация архитектур ис
- •Жизненные циклы проектирования ис
- •Автоматизация процесса проектирования ис
- •Модели и диаграммы, используемые при проектировании ис
- •Стадии геолого-геофизических работ и применяемые средства и устройства
- •Принципы комплексирования геофизических методов
- •1. Принципы коррелируемости.
- •Принцип суперпозиции.
- •3.1. Качественная интерпретация при комплексировании геофизических методов.
- •3.2. Принципы количественной интерпретации комплексных геофизических данных.
- •80.Петрофизические и физико-геологоические модели в геоинформатике
- •81.Прямая и обратная задачи в прикладной геофизике.
15.Векторная форма представления графической информации. Форматы файлов. Преимущества и недостатки
Есть два основных способа цифрового представления графики: растровое изображение и векторное изображение. Векторное изображение - это графический объект, построенный из геометрических примитивов, таких как точки, линии, сплайны и многоугольники. Они хранятся в памяти компьютера в виде математических формул и числовых параметров. Из простейших фигур складываются более сложные. Каждая фигура обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием. Охватываемое фигурами пространство может быть заполнено другими объектами (текстуры, карты), цветом или особым способом (например, заштрихована).
Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет -- трассировка растра обычно не обеспечивает высокого качества векторного рисунка.
Векторная графика используется для создания иллюстраций и рисунков в издательском деле, карт в компьютерной топографии (геоинформационных системах). СAD-системы (системы автоматизированного проектирования) используют векторный подход для рисования чертежей.
При помощи векторной графики можно задать не только двумерные, но и трёхмерные фигуры. Все современные редакторы трёхмерной графики являются векторными, и лишь при создании итогового изображения или видеоролика происходит преобразование в растровую графику. Векторное изображение проще анимировать, поэтому, сегодня векторная графика используется для создания анимации и компьютерных игр. Например, программа Macromedia Flash, предназначенная для создания анимации на веб-страницах, основана на векторном представлении графики, хотя и поддерживает использование растровых изображений.
Необходимо отметить, что в процессе визуализации векторная графика всегда преобразовывается в растровую форму.
Преимущества
Размер, занимаемой описательной частью, не зависит от реальной величины объекта, что позволяет, используя минимальное количество информации, описать сколько угодно раз большой объект файлом минимального размера.
В связи с тем, что информация об объекте хранится в описательной форме, можно бесконечно увеличить графический примитив, например, дугу окружности, и она останется гладкой. С другой стороны, если кривая представлена в виде ломаной линии, увеличение покажет, что она на самом деле не кривая.
Параметры объектов хранятся и могут быть легко изменены. Также это означает что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшат качества рисунка. Более того, обычно указывают размеры в аппаратно-независимых единицах (англ. device-independent unit), которые ведут к наилучшей возможной растеризации на растровых устройствах.
При увеличении или уменьшении объектов толщина линий может быть задана постоянной величиной, независимо от реального контура.
Недостатки
Не каждый объект может быть легко изображен в векторном виде — для подобного оригинальному изображению может потребоваться очень большое количество объектов и их сложности, что негативно влияет на количество памяти, занимаемой изображением, и на время для его отображения (отрисовки).
Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет — трассировка растра, при том что требует значительных вычислительных мощностей и времени, не всегда обеспечивает высокое качества векторного рисунка.