Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
отчет по практике Баулина.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
1.98 Mб
Скачать

3.2.2 Архитектура gpu

Для понимания дальнейшего текста следует разбираться в базовых архитектурных особенностях видеочипов NVIDIA. GPU состоит из нескольких кластеров текстурных блоков (Texture Processing Cluster). Каждый кластер состоит из укрупнённого блока текстурных выборок и двух-трех потоковых мультипроцессоров(streaming multiprocessor), каждый из которых состоит из восьми вычислительных устройств и двух суперфункциональных устройств SFU (Super Function Unit). Все инструкции выполняются по принципу SIMD, когда одна инструкция применяется ко всем потокам в warp. Этот способ выполнения назвали SIMT (single instruction multiple threads — одна инструкция и много потоков).

Рис. 14 Архитектура GPU

Каждый из мультипроцессоров имеет определённые ресурсы. Так, есть специальная разделяемая память объемом 16 килобайт на мультипроцессор. Но это не кэш, так как программист может использовать её для любых нужд. Эта разделяемая память позволяет обмениваться информацией между потоками одного блока. Важно, что все потоки одного блока всегда выполняются одним и тем же мультипроцессором. А потоки из разных блоков обмениваться данными не могут, и нужно помнить это ограничение. Разделяемая память часто бывает полезной, кроме тех случаев, когда несколько потоков обращаются к одному банку памяти. Мультипроцессоры могут обращаться и к видеопамяти, но с большими задержками и худшей пропускной способностью. Для ускорения доступа и снижения частоты обращения к видеопамяти, у мультипроцессоров есть по 8 килобайт кэша на константы и текстурные данные.

Мультипроцессор использует 8192-16384 (для G8x/G9x и GT2xx, соответственно) регистра, общие для всех потоков всех блоков, выполняемых на нём. Максимальное число блоков на один мультипроцессор для G8x/G9x равно восьми, а число варпов (о них речь пойдет деле) — 24 (768 потоков на один мультипроцессор). Всего топовые видеокарты серий GeForce 8 и 9 могут обрабатывать до 12288 потоков единовременно. Знание этих ограничений позволяет оптимизировать алгоритмы под доступные ресурсы.

Первым шагом при переносе существующего приложения на CUDA является его профилирование и определение участков кода, являющихся «бутылочным горлышком», тормозящим работу. Если среди таких участков есть подходящие для быстрого параллельного исполнения, эти функции переносятся на C расширения CUDA для выполнения на GPU. Программа компилируется при помощи поставляемого NVIDIA компилятора, который генерирует код и для CPU, и для GPU. При исполнении программы, центральный процессор выполняет свои порции кода, а GPU выполняет CUDA код с наиболее тяжелыми параллельными вычислениями. Эта часть, предназначенная для GPU, называется ядром (kernel). В ядре определяются операции, которые будут исполнены над данными.

Видеочип получает ядро и создает копии для каждого элемента данных. Эти копии называются потоками (thread). Поток содержит счётчик, регистры и состояние. Для больших объёмов данных, таких как обработка изображений, запускаются миллионы потоков. Потоки выполняются группами по 32 штуки, называемыми варпы (warp). Варпам назначается исполнение на определенных потоковых мультипроцессорах. Каждый мультипроцессор состоит из восьми ядер — потоковых процессоров, которые выполняют одну инструкцию MAD за один такт. Для исполнения одного 32-поточного варпа требуется четыре такта работы мультипроцессора (речь о частоте shader domain, которая равна 1.5 ГГц и выше).

Мультипроцессор не является традиционным многоядерным процессором, он отлично приспособлен для многопоточности, поддерживая до 32 варпов единовременно. Каждый такт аппаратное обеспечение выбирает, какой из варпов исполнять, и переключается от одного к другому без потерь в тактах. Если проводить аналогию с центральным процессором, это похоже на одновременное исполнение 32 программ и переключение между ними каждый такт без потерь на переключение контекста. Реально ядра CPU поддерживают единовременное выполнение одной программы и переключаются на другие с задержкой в сотни тактов.