- •Основы моделирования
- •Предисловие
- •Модуль I.
- •Классификация систем
- •Целостность, эмерджентность и синергизм
- •Системный анализ в экономике
- •Тема 1.2. Модели и моделирование
- •Основные схемы процесса моделирования
- •Классификация моделей
- •История моделирования Появление моделей относится к глубокой древности, и восходит по времени к бронзовому веку (XV-XX в.В. До н. Э.).
- •Совместное использование моделей различных типов
- •Тема 1.3. Последовательность разработки и использования математических моделей Процесс моделирования
- •6. Разработка программы, реализующей алгоритм модели на компьютере.
- •Тема 1.4. Моделирование - одно из основных понятий кибернетики Определение кибернетики и ее основных понятий
- •Структура кибернетики
- •Принципы построения кибернетических систем различных прикладных направлений
- •Тема 1.5. Математические методы в моделировании экономических систем Предмет, цели и задачи курса
- •Математические методы в моделировании экономических систем
- •История кибернетики и информационных наук
- •Главное в содержательном модуле 1
- •Семинар № 1. Моделирование как метод исследования
- •Итоговые тестовые задания к содержательному модулю 1
- •Контрольные вопросы к содержательному модулю 1
- •Содержательный модуль 2. Моделирование в экономической сфере
- •Тема 2.1. Системные свойства экономики
- •Основные системные свойства экономики
- •Структуры и модели рыночной экономики
- •Тема 2.2. Моделирование и принятие решений Принятие решений
- •Методы обоснования решений
- •Количественные методы позволяют установить насколько один результат лучше другого.
- •Тема 2.3. Критерии качества и критерии принятия решений
- •Требования, предъявляемые к критериям качества
- •Классификация и формы критериев качества Классификация критериев качества
- •Математические формы критериев качества
- •Статистические задачи
- •Тема 2.4. Примеры математических моделей экономических систем
- •Часть 1.Модель определения характеристик смо.
- •Часть 2.Модель определения экономической эффективности смо.
- •Модели динамических систем Модель динамического звена первого порядка
- •Модель динамического звена второго порядка
- •Модель экономического роста
- •Модели финансовых операций
- •Первая модель
- •Вторая модель
- •Третья модель
- •Четвертая модель
- •Пятая модель
- •Шестая модель
- •Тема 2.5. Имитационное моделирование на основе метода статистических испытаний Метод статистических испытаний (метод Монте-Карло)
- •Исследование смо с применением метода статистических испытаний
- •Методика и пример формирования простейшего потока
- •Главное в содержательном модуле 2
- •Семинар № 2. Моделирование в экономической сфере
- •Итоговые тестовые задания к содержательному модулю 2
- •Контрольные вопросы к содержательному модулю 2
- •Список литературы к модулю I
- •Модуль II.
- •Основные категории информации – данные и знания
- •Основные свойства информации
- •Виды информации
- •Основные требования, предъявляемые к качеству информации
- •Классификация информации
- •Тема 3.2. Экономическая информация и ее классификация Экономическая информация
- •Экономическая семиотика
- •Основные элементы системы передачи информации
- •Тема 3.3. Измерение количества информации Основные подходы к измерению количества информации
- •Объемный метод измерения количества информации
- •Энтропийный подход к измерению количества информации
- •Вопрос 2: Число х больше шести?
- •Вопрос 3: Число х меньше шести?
- •Количество информации, получаемое от отдельного сообщения
- •Семантический подход к определению количества информации
- •Тема 3.4. Ценность информации Определение ценности информации
- •Человек и информация
- •Бытовые – искажение информации в отчетах, в докладах начальству, в отношениях мужчины и женщины, и т.П.
- •Тема 3.5. Информационные модели и системы
- •Главное в содержательном модуле 3
- •Семинар № 3. Информация и информационные модели.
- •Итоговые тестовые задания к содержательному модулю 3
- •Контрольные вопросы к содержательному модулю 3
- •Содержательный модуль 4.
- •Реализация управления
- •Разомкнутые системы управления
- •Внешние и внутренние возмущения
- •Анализ свойств разомкнутой системы управления
- •Тема 4.2. Замкнутые системы управления
- •Коэффициенты передачи и передаточные функции замкнутой системы управления
- •Анализ свойств замкнутой системы управления
- •Выводы:
- •Типы обратных связей и сферы их применения Обратные связи могут быть:
- •Тема 4.3. Классификация систем управления и виды задач управления Классификация систем управления
- •Виды задач управления
- •Понятие гомеостазиса
- •Тема 4.4. Закон необходимого разнообразия и его следствия для систем управления Энтропия систем и закон необходимого разнообразия
- •Свойства систем управления, основанные на законе необходимого разнообразия
- •Тема 4.5. Управление сложными системами Иерархические системы управления
- •Централизованное и децентрализованное управление сложными системами
- •Анализ децентрализованных систем управления
- •Главное в содержательном модуле 4
- •Семинар № 4. Модели управления.
- •Итоговые тестовые задания к содержательному модулю 4
- •Контрольные вопросы к содержательному модулю 4
- •Список литературы к модулю II
- •Модуль III.
- •Оптимизационные задачи
- •Оптимизация систем массового обслуживания
- •Пример решения задачи оптимизации смо.
- •Оптимизация систем управления запасами
- •Тема 5.2. Оптимальное распределение ресурсов между несколькими этапами и между несколькими объектами Последовательная (многоэтапная) оптимизация с использованием метода динамического программирования
- •Уравнение оптимальности Беллмана имеет вид
- •Оптимизация маршрута
- •Оптимальное распределение ресурсов между несколькими объектами
- •Приравниваем производные нулю
- •Тема 5.3. Наилучшие решения в условиях частичной и полной неопределенности Игры с «природой»
- •Наилучшие решения в условиях частичной неопределенности
- •Наилучшее решение в условиях полной неопределенности
- •Матрица выигрышей
- •Тема 5.4. Наилучшие решения в условиях многокритериальности
- •Главное в содержательном модуле 5
- •Семинар № 5. Модели оптимизации.
- •Итоговые тестовые задания к содержательному модулю 5
- •Контрольные вопросы к содержательному модулю 5
- •Содержательный модуль 6. Модели интеллектуализации
- •Тема 6.1. Основные положения построения систем искусственного интеллекта
- •Зависимость типа системы управления от сложности объекта управления и влияния случайных факторов
- •История систем ии
- •Виды неопределенностей
- •Тема 6.2. Нечеткие системы
- •Нечеткие системы в управлении
- •Тема 6.3. Нейронные сети Принципы построения и основные свойства нейронных сетей
- •Представление знаний в нейронных сетях
- •Применение нейронных сетей в экономике
- •Пример решения задачи прогнозирования
- •Тема 6.4. Экспертные системы Принципы построения и функционирования экспертных систем
- •Пример применения экспертных систем в экономике и финансах – экспертная система для кредитных операций
- •Представление знаний в экспертных системах
- •Тема 6.5. Генетические алгоритмы
- •Главное в содержательном модуле 6
- •Семинар № 6. Модели интеллектуализации.
- •Итоговые тестовые задания к содержательному модулю 6
- •Контрольные вопросы к содержательному модулю 6
- •Список литературы к модулю III
- •Модуль IV моделирование систем массового обслуживани
- •Содержательный модуль 7. Системы массового обслуживания в экономике
- •Тема 7.1. Основные характеристики и задачи исследования смо
- •Основные понятия, связанные с системами массового обслуживания
- •Структурная схема простой смо. Основные обозначения. Характеристики важнейших параметров Структурная схема простой смо
- •Основные обозначения
- •Характеристики важнейших параметров
- •Задачи исследования смо
- •Методология разработки аналитических моделей смо
- •Обозначения моделей смо
- •Тема 7.2. Классификация смо
- •Тема 7.3. Потоки событий Характер величин и процессов в смо
- •Смо с детерминированными потоками
- •Случайные потоки событий
- •Тема 7.4. Марковские случайные процессы Графы состояний смо
- •Марковские процессы
- •Стационарный режим динамического процесса
- •Законы распределения, определяющие описание и формирование простейшего потока
- •Закон Пуассона
- •Исходные данные
- •Алгоритм решения задачи
- •Решение
- •Экспоненциальный (показательный) закон распределения
- •Закон равномерной плотности
- •Тема 7.5. Уравнения Колмогорова Дифференциальные и алгебраические уравнения Колмогорова
- •Общие формулы решения системы алгебраических уравнений Колмогорова для схемы ''рождения и гибели''
- •Тема 7.6. Модель Эрланга Одноканальная смо с отказами
- •Многоканальная смо с отказами
- •Главное в содержательном модуле 7
- •Семинар № 7. Моделирование систем массового обслуживания.
- •Итоговые тестовые задания к содержательному модулю 7
- •Контрольные вопросы к содержательному модулю 7
- •Содержательный модуль 8. Анализ и синтез системы массового обслуживания Характеристика задач анализа и синтеза смо
- •Определение вероятностей отказа и обслуживания Основные формулы для смо Эрланга
- •Пример расчетов по формулам Эрланга
- •Построение графиков вероятности отказа и обслуживания на основе расчетных данных
- •Построение графиков вероятностей отказа и обслуживания на основе табличных данных
- •Графики вероятностей отказа
- •Графики вероятностей обслуживания
- •Определение показателей качества смо с отказами
- •Показатели качества обслуживания заявки
- •Показатели качества обслуживания заявки
- •Пример расчета характеристик смо с ожиданием
- •Расчетные параметры:
- •Показатели качества функционирования
- •Показатели качества обслуживания заявки
- •Компьютерные программы и таблицы вероятностей отказа для смо с ограниченным временем ожидания
- •Сопоставление смо с отказами и смо с ожиданием
- •Тема 8.3. Методика оценки экономической эффективности смо Постановка задачи оценки экономической эффективности
- •Уравнения блока оценки экономической эффективности
- •Уравнения полной модели оценки экономической эффективности смо
- •Модель смо
- •Блок оценки экономической эффективности
- •Вариант №2 кафе «десерт»
- •Определение показателей экономической эффективности смо на момент окупаемости Результаты расчетов
- •Составление итоговой таблицы результатов расчетов по оценке экономической эффективности смо
- •Сопоставление вариантов смо по основным экономическим характеристикам
- •Тема 8.5. Синтез смо и принятие решения об инвестировании Составление таблицы результатов расчетов по оценке экономической эффективности смо
- •Ранжирование вариантов и выводы
- •Определение взаимосвязи параметров смо с экономическими параметрами системы
- •Главное в содержательном модуле 8
- •Семинар № 8. Анализ и синтез систем массового обслуживания.
- •Итоговые тестовые задания к содержательному модулю 8
- •Контрольные вопросы к содержательному модулю 8
- •Список литературы к модулю IV
- •Итоговые контрольные вопросы по курсу
- •Приложения п.1. Задание на подготовку реферата «Замкнутые системы управления»
- •П.2. Задание на подготовку реферата «Системы массового обслуживания»
- •Часть 1. Определение характеристик смо.
- •Вероятность обслуживания
- •Часть 2. Оценка экономической эффективности смо.
- •Результаты расчетов
- •П.3. Равномерно распределенные случайные числа
- •П 4. Вероятности отказа для смо Эрланга
- •П 5. Компьютерные программы для смо Эрланга п 5.1. Программы на языке Паскаль
- •П.5.3. Программа на языке Visual Basic для расчета экономической эффективности смо
- •П 6. Вероятности отказа для смо с ограниченным временем ожидания
- •П 7. Компьютерная программа для смо с ограниченным временем ожидания
- •Литература
Законы распределения, определяющие описание и формирование простейшего потока
К числу таких законов распределения относятся:
закон распределения Пуассона;
экспоненциальный (показательный) закон распределения;
закон равномерной плотности.
Закон Пуассона определяет распределение дискретной случайной величины – количества событий, происходящих за определенный интервал времени. В качестве события может быть поступление заявки или её обслуживание.
Экспоненциальный закон определяет распределение непрерывной случайной величины – интервал времени между двумя последовательными событиями.
Эти два закона взаимосвязаны.
В теории вероятностей
показывается, что если распределение
количества событий имеет пуассоновское
распределение с математическим ожиданием
количества требований, поступивших в
единицу времени равным ,
то интервалы времени между ними
распределены по экспоненциальному
закону с математическим ожиданием,
равным
.
И, наоборот, из экспоненциального распределения интервалов между событиями следует пуассоновское распределение их количества.
Это свойство используется при формировании простейшего потока событий. Исходным при этом является поток случайных чисел, имеющих равномерное распределение. В результате функционального преобразования, которое будет рассмотрено ниже, получается поток событий, имеющих экспоненциальное распределение. Этот поток является простейшим.
Закон Пуассона
Пуассон – французский математик (1781–1840 гг.). Закон Пуассона может рассматриваться как математическая модель простейшего потока, поскольку отражает все его свойства – ординарность, стационарность и отсутствие последействия.
Закон характеризует следующую ситуацию.
Пусть имеется поток с интенсивностью . Под интенсивностью понимается среднее количество требований, поступающих в единицу времени.
Тогда среднее количество требований, поступивших за время t, есть величина
a=∙t.
В этом случае вероятность поступления равно kтребований за времяtопределяется формулой Пуассона
(7.15)
Или с учетом того, что a=∙t
(7.16)
Величину a=λ ∙tназываютпараметром закона Пуассона.
Пусть Х - дискретная случайная величина, принимающая только целые неотрицательные значения 0, 1, 2…
В случае пуассоновского распределения этой случайной величины, её математическое ожидание m=λ ∙t;
Среднее квадратическое отклонение также равно λ ∙ t, т. е. σ=λ ∙t.
Ряд распределения случайной величины Х, подчиняющейся закону Пуассона, имеет вид, представленный в табл.7.3.
Таблица 7.3.
|
Х=k |
0 |
1 |
2 |
3 |
4 |
… |
k |
|
Р(k) |
e-λt |
|
|
|
|
… |
|
Значения Р(k) в функции k при различных значениях параметра λtприведены в табл.7.4.
Таблица распределения Пуассона
Таблица 7.4.
|
e-λt |
k λt |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
e-0,5 |
0,5 |
0,6065 |
0,3033 |
0,0758 |
0,0126 |
0,0016 |
0,0002 |
|
|
|
|
e-1 |
1 |
0,3679 |
0,3679 |
0,1839 |
0,0613 |
0,0153 |
0,0031 |
|
|
|
|
e-2 |
2 |
0,1353 |
0,2707 |
0,2707 |
0,1804 |
0,0902 |
0,0361 |
0,0120 |
0,0037 |
|
|
e-3 |
3 |
0,0498 |
0,1494 |
0,2240 |
0,2240 |
0,1680 |
0,1008 |
0,0504 |
0,0216 |
0,0081 |
|
e-4 |
4 |
0,0183 |
|
|
|
|
|
|
|
|
|
e-5 |
5 |
0,00674 |
|
|
|
|
|
|
|
|
|
e-6 |
6 |
0,0025 |
0,0149 |
0,0446 |
0,0892 |
0,1339 |
0,1606 |
0,1606 |
0,1377 |
0,1033 |
Многоугольники распределения случайной величины Х, распределенной по закону Пуассона, при соответствующих значениях параметра λt, показаны на рис.7.25.
О
тметим,
что особенностью закона Пуассона
является зависимость его формы от
параметра λt.
Рис. 7.25.Многоугольники распределения случайной величины распределенной по закону Пуассона
Задача
Среднее число вызовов, поступающих в СМО, в качестве которой рассматривается АТС, в 1 мин. равно двум. Найти вероятность того, что за 3 мин. поступит вызовов:
а) четыре – (ровно k);
б) менее четырех – (менее k);
в) не менее четырех – (больше или равно k).
Предполагается, что поток событий – простейший.
