
- •Основы моделирования
- •Предисловие
- •Модуль I.
- •Классификация систем
- •Целостность, эмерджентность и синергизм
- •Системный анализ в экономике
- •Тема 1.2. Модели и моделирование
- •Основные схемы процесса моделирования
- •Классификация моделей
- •История моделирования Появление моделей относится к глубокой древности, и восходит по времени к бронзовому веку (XV-XX в.В. До н. Э.).
- •Совместное использование моделей различных типов
- •Тема 1.3. Последовательность разработки и использования математических моделей Процесс моделирования
- •6. Разработка программы, реализующей алгоритм модели на компьютере.
- •Тема 1.4. Моделирование - одно из основных понятий кибернетики Определение кибернетики и ее основных понятий
- •Структура кибернетики
- •Принципы построения кибернетических систем различных прикладных направлений
- •Тема 1.5. Математические методы в моделировании экономических систем Предмет, цели и задачи курса
- •Математические методы в моделировании экономических систем
- •История кибернетики и информационных наук
- •Главное в содержательном модуле 1
- •Семинар № 1. Моделирование как метод исследования
- •Итоговые тестовые задания к содержательному модулю 1
- •Контрольные вопросы к содержательному модулю 1
- •Содержательный модуль 2. Моделирование в экономической сфере
- •Тема 2.1. Системные свойства экономики
- •Основные системные свойства экономики
- •Структуры и модели рыночной экономики
- •Тема 2.2. Моделирование и принятие решений Принятие решений
- •Методы обоснования решений
- •Количественные методы позволяют установить насколько один результат лучше другого.
- •Тема 2.3. Критерии качества и критерии принятия решений
- •Требования, предъявляемые к критериям качества
- •Классификация и формы критериев качества Классификация критериев качества
- •Математические формы критериев качества
- •Статистические задачи
- •Тема 2.4. Примеры математических моделей экономических систем
- •Часть 1.Модель определения характеристик смо.
- •Часть 2.Модель определения экономической эффективности смо.
- •Модели динамических систем Модель динамического звена первого порядка
- •Модель динамического звена второго порядка
- •Модель экономического роста
- •Модели финансовых операций
- •Первая модель
- •Вторая модель
- •Третья модель
- •Четвертая модель
- •Пятая модель
- •Шестая модель
- •Тема 2.5. Имитационное моделирование на основе метода статистических испытаний Метод статистических испытаний (метод Монте-Карло)
- •Исследование смо с применением метода статистических испытаний
- •Методика и пример формирования простейшего потока
- •Главное в содержательном модуле 2
- •Семинар № 2. Моделирование в экономической сфере
- •Итоговые тестовые задания к содержательному модулю 2
- •Контрольные вопросы к содержательному модулю 2
- •Список литературы к модулю I
- •Модуль II.
- •Основные категории информации – данные и знания
- •Основные свойства информации
- •Виды информации
- •Основные требования, предъявляемые к качеству информации
- •Классификация информации
- •Тема 3.2. Экономическая информация и ее классификация Экономическая информация
- •Экономическая семиотика
- •Основные элементы системы передачи информации
- •Тема 3.3. Измерение количества информации Основные подходы к измерению количества информации
- •Объемный метод измерения количества информации
- •Энтропийный подход к измерению количества информации
- •Вопрос 2: Число х больше шести?
- •Вопрос 3: Число х меньше шести?
- •Количество информации, получаемое от отдельного сообщения
- •Семантический подход к определению количества информации
- •Тема 3.4. Ценность информации Определение ценности информации
- •Человек и информация
- •Бытовые – искажение информации в отчетах, в докладах начальству, в отношениях мужчины и женщины, и т.П.
- •Тема 3.5. Информационные модели и системы
- •Главное в содержательном модуле 3
- •Семинар № 3. Информация и информационные модели.
- •Итоговые тестовые задания к содержательному модулю 3
- •Контрольные вопросы к содержательному модулю 3
- •Содержательный модуль 4.
- •Реализация управления
- •Разомкнутые системы управления
- •Внешние и внутренние возмущения
- •Анализ свойств разомкнутой системы управления
- •Тема 4.2. Замкнутые системы управления
- •Коэффициенты передачи и передаточные функции замкнутой системы управления
- •Анализ свойств замкнутой системы управления
- •Выводы:
- •Типы обратных связей и сферы их применения Обратные связи могут быть:
- •Тема 4.3. Классификация систем управления и виды задач управления Классификация систем управления
- •Виды задач управления
- •Понятие гомеостазиса
- •Тема 4.4. Закон необходимого разнообразия и его следствия для систем управления Энтропия систем и закон необходимого разнообразия
- •Свойства систем управления, основанные на законе необходимого разнообразия
- •Тема 4.5. Управление сложными системами Иерархические системы управления
- •Централизованное и децентрализованное управление сложными системами
- •Анализ децентрализованных систем управления
- •Главное в содержательном модуле 4
- •Семинар № 4. Модели управления.
- •Итоговые тестовые задания к содержательному модулю 4
- •Контрольные вопросы к содержательному модулю 4
- •Список литературы к модулю II
- •Модуль III.
- •Оптимизационные задачи
- •Оптимизация систем массового обслуживания
- •Пример решения задачи оптимизации смо.
- •Оптимизация систем управления запасами
- •Тема 5.2. Оптимальное распределение ресурсов между несколькими этапами и между несколькими объектами Последовательная (многоэтапная) оптимизация с использованием метода динамического программирования
- •Уравнение оптимальности Беллмана имеет вид
- •Оптимизация маршрута
- •Оптимальное распределение ресурсов между несколькими объектами
- •Приравниваем производные нулю
- •Тема 5.3. Наилучшие решения в условиях частичной и полной неопределенности Игры с «природой»
- •Наилучшие решения в условиях частичной неопределенности
- •Наилучшее решение в условиях полной неопределенности
- •Матрица выигрышей
- •Тема 5.4. Наилучшие решения в условиях многокритериальности
- •Главное в содержательном модуле 5
- •Семинар № 5. Модели оптимизации.
- •Итоговые тестовые задания к содержательному модулю 5
- •Контрольные вопросы к содержательному модулю 5
- •Содержательный модуль 6. Модели интеллектуализации
- •Тема 6.1. Основные положения построения систем искусственного интеллекта
- •Зависимость типа системы управления от сложности объекта управления и влияния случайных факторов
- •История систем ии
- •Виды неопределенностей
- •Тема 6.2. Нечеткие системы
- •Нечеткие системы в управлении
- •Тема 6.3. Нейронные сети Принципы построения и основные свойства нейронных сетей
- •Представление знаний в нейронных сетях
- •Применение нейронных сетей в экономике
- •Пример решения задачи прогнозирования
- •Тема 6.4. Экспертные системы Принципы построения и функционирования экспертных систем
- •Пример применения экспертных систем в экономике и финансах – экспертная система для кредитных операций
- •Представление знаний в экспертных системах
- •Тема 6.5. Генетические алгоритмы
- •Главное в содержательном модуле 6
- •Семинар № 6. Модели интеллектуализации.
- •Итоговые тестовые задания к содержательному модулю 6
- •Контрольные вопросы к содержательному модулю 6
- •Список литературы к модулю III
- •Модуль IV моделирование систем массового обслуживани
- •Содержательный модуль 7. Системы массового обслуживания в экономике
- •Тема 7.1. Основные характеристики и задачи исследования смо
- •Основные понятия, связанные с системами массового обслуживания
- •Структурная схема простой смо. Основные обозначения. Характеристики важнейших параметров Структурная схема простой смо
- •Основные обозначения
- •Характеристики важнейших параметров
- •Задачи исследования смо
- •Методология разработки аналитических моделей смо
- •Обозначения моделей смо
- •Тема 7.2. Классификация смо
- •Тема 7.3. Потоки событий Характер величин и процессов в смо
- •Смо с детерминированными потоками
- •Случайные потоки событий
- •Тема 7.4. Марковские случайные процессы Графы состояний смо
- •Марковские процессы
- •Стационарный режим динамического процесса
- •Законы распределения, определяющие описание и формирование простейшего потока
- •Закон Пуассона
- •Исходные данные
- •Алгоритм решения задачи
- •Решение
- •Экспоненциальный (показательный) закон распределения
- •Закон равномерной плотности
- •Тема 7.5. Уравнения Колмогорова Дифференциальные и алгебраические уравнения Колмогорова
- •Общие формулы решения системы алгебраических уравнений Колмогорова для схемы ''рождения и гибели''
- •Тема 7.6. Модель Эрланга Одноканальная смо с отказами
- •Многоканальная смо с отказами
- •Главное в содержательном модуле 7
- •Семинар № 7. Моделирование систем массового обслуживания.
- •Итоговые тестовые задания к содержательному модулю 7
- •Контрольные вопросы к содержательному модулю 7
- •Содержательный модуль 8. Анализ и синтез системы массового обслуживания Характеристика задач анализа и синтеза смо
- •Определение вероятностей отказа и обслуживания Основные формулы для смо Эрланга
- •Пример расчетов по формулам Эрланга
- •Построение графиков вероятности отказа и обслуживания на основе расчетных данных
- •Построение графиков вероятностей отказа и обслуживания на основе табличных данных
- •Графики вероятностей отказа
- •Графики вероятностей обслуживания
- •Определение показателей качества смо с отказами
- •Показатели качества обслуживания заявки
- •Показатели качества обслуживания заявки
- •Пример расчета характеристик смо с ожиданием
- •Расчетные параметры:
- •Показатели качества функционирования
- •Показатели качества обслуживания заявки
- •Компьютерные программы и таблицы вероятностей отказа для смо с ограниченным временем ожидания
- •Сопоставление смо с отказами и смо с ожиданием
- •Тема 8.3. Методика оценки экономической эффективности смо Постановка задачи оценки экономической эффективности
- •Уравнения блока оценки экономической эффективности
- •Уравнения полной модели оценки экономической эффективности смо
- •Модель смо
- •Блок оценки экономической эффективности
- •Вариант №2 кафе «десерт»
- •Определение показателей экономической эффективности смо на момент окупаемости Результаты расчетов
- •Составление итоговой таблицы результатов расчетов по оценке экономической эффективности смо
- •Сопоставление вариантов смо по основным экономическим характеристикам
- •Тема 8.5. Синтез смо и принятие решения об инвестировании Составление таблицы результатов расчетов по оценке экономической эффективности смо
- •Ранжирование вариантов и выводы
- •Определение взаимосвязи параметров смо с экономическими параметрами системы
- •Главное в содержательном модуле 8
- •Семинар № 8. Анализ и синтез систем массового обслуживания.
- •Итоговые тестовые задания к содержательному модулю 8
- •Контрольные вопросы к содержательному модулю 8
- •Список литературы к модулю IV
- •Итоговые контрольные вопросы по курсу
- •Приложения п.1. Задание на подготовку реферата «Замкнутые системы управления»
- •П.2. Задание на подготовку реферата «Системы массового обслуживания»
- •Часть 1. Определение характеристик смо.
- •Вероятность обслуживания
- •Часть 2. Оценка экономической эффективности смо.
- •Результаты расчетов
- •П.3. Равномерно распределенные случайные числа
- •П 4. Вероятности отказа для смо Эрланга
- •П 5. Компьютерные программы для смо Эрланга п 5.1. Программы на языке Паскаль
- •П.5.3. Программа на языке Visual Basic для расчета экономической эффективности смо
- •П 6. Вероятности отказа для смо с ограниченным временем ожидания
- •П 7. Компьютерная программа для смо с ограниченным временем ожидания
- •Литература
Тема 6.4. Экспертные системы Принципы построения и функционирования экспертных систем
Экспертные системы имеют в своем составе два основных блока:
базу знаний (БЗ);
машину логического вывода (МЛВ).
Система, состоящая из этих блоков, показана на рис.6.13.
Рис.6.13.Структура экспертной системы.
База знаний содержит факты и знания. Машина логического вывода на основе прямой или обратной цепочки рассуждений дает ответы на вопросы, интересующие пользователя.
Рассмотрим простейший пример работы экспертной системы, реализующей прямую цепочку рассуждений, в частности, от симптомов к болезни.
Пусть в базе знаний содержатся декларативные знания в виде трех факторов:
у пациента высокая температура;
у пациента болит голова;
у пациента болит горло.
Процедурные знания представлены двумя правилами-продукциями типа «ЕСЛИ-ТО»:
ЕСЛИ у пациента высокая температура и болит голова, ТО – это грипп.
ЕСЛИ у пациента высокая температура и болит горло, ТО – это ангина.
Пользователю компьютер задает вопросы, соответствующие фактам 1, 2 и 3. Пользователь на каждый вопрос дает ответ типа «да» или «нет». В зависимости от комбинации этих ответов машина логического вывода формирует соответствующие решения.
Если комбинация ответов имеет вид «да, да, нет» - то решение – грипп.
При комбинации ответов «да, нет, да», решение – «ангина».
При других комбинациях ответов, машина выдает решение – «не знаю».
Пример применения экспертных систем в экономике и финансах – экспертная система для кредитных операций
В такой системе используются знания трех видов. Самым важным из них являются знания об обеспечении клиента. Различные типы обеспечения делятся по категориям. К обеспечению первого класса относят депозиты. Наличные товары – пример обеспечения второго класса, а обеспечение закладными относится к категории неликвидов.
Очень важными являются знания о финансовом состоянии клиента. Двумя наиболее существенными факторами финансовой характеристики клиента являются собственные средства и текущая валовая прибыль от продаж.
Третья категория знаний – об ожидаемых доходах банка.
В соответствии с этими знаниями формируются три модуля базы знаний: обеспечение, финансовое положение и доход банка.
Машина логического вывода оперирует с продукционными правилами, например следующего вида:
Если: обеспечение – превосходное,
финансовые условия – хорошие,
доход – приемлемый,
То: дать кредит.
Если: обеспечение – хорошее,
финансовые условия – хорошие,
доход – приемлемый,
То: рекомендуется получить дополнительные данные о клиенте.
Если: обеспечение – умеренное,
финансовые условия – средние,
То: в кредите отказать.
Один из вариантов реализации системы – с помощью языка ПРОЛОГ.
Представление знаний в экспертных системах
Знания, с которыми экспертная система осуществляет логический вывод должны быть представлены в определенной форме.
Существуют две категории методов представления знаний в экспертных системах
когнитивные;
логические.
Когнитивные методы основаны на изучений принципов вербальных (т е. словесных) и наглядно-образных форм представления знаний в процессе человеческого мышления. К их числу относятся представление знаний в виде:
продукционной модели;
фреймов;
семантической сети.
Логические методы основаны на использовании какой-либо формальной логической системы, в частности, на использовании логики предикатов.
Продукционная модель представляет знания в виде правил типа:
ЕСЛИ (условие), ТО (заключение).
Применительно к рассматриваемому примеру распознавания типа летательного объекта, продукционная модель имеет следующий вид:
ЕСЛИ объект имеет
крылья;
хвост;
шасси;
двигатель,
ТО – это самолет.
Продукционные модели являются наиболее распространенными в экспертных системах. Для логического вывода знания, как правило, представляются в виде правил-продукций.
К недостаткам продукционных правил относятся:
отсутствие ясности взаимных отношений правил;
сложность оценки целостного образа знаний;
уменьшение скорости логического вывода при существенном увеличении количества правил.
В случае увеличения объема знаний при решении сложных задач требуется группировка знаний и использование более крупных и наглядных, чем правила, структур.
К числу таких структур относятся фреймы. Фрейм может быть представлен в виде структуры следующего вида:
,
где
f– имя фрейма
<Si,Vi> –i-ый слот
Si– имяi-ого слота
Vi– значениеi-ого слота.
Фрейм может иметь иерархическую структуру.
Пример представления знаний с помощью фреймов показан на рис. 6.14.
Фрейм «Самолет»
Это есть |
Летающий объект |
Имеет |
К |
|
Хвост |
|
Шасси |
|
Двигатель |
Рис. 6.14. Представление знаний с помощью фреймов
Семантическая сеть отображает совокупность объектов предметной области и отношений между ними.
При этом объектам соответствуют вершины сети, а отношениям - соединяющие их дуги.
Основными являются отношения типа «является» и «имеет». Соответствующий пример представлен на рис.6.15.
Рис. 6.15.Представление знаний с помощью семантической сети
Представление знаний может осуществляться с помощью логики предикатов.
Предикат — это функция, которая в зависимости от входящих в него элементов принимает значение «истинно» или «ложно».
Бинарный предикат Q (x,у) характеризует отношение двух объектов.
Например, предикат имеет (х, крылья)=1, если х – самолёт.