- •Основы моделирования
- •Предисловие
- •Модуль I.
- •Классификация систем
- •Целостность, эмерджентность и синергизм
- •Системный анализ в экономике
- •Тема 1.2. Модели и моделирование
- •Основные схемы процесса моделирования
- •Классификация моделей
- •История моделирования Появление моделей относится к глубокой древности, и восходит по времени к бронзовому веку (XV-XX в.В. До н. Э.).
- •Совместное использование моделей различных типов
- •Тема 1.3. Последовательность разработки и использования математических моделей Процесс моделирования
- •6. Разработка программы, реализующей алгоритм модели на компьютере.
- •Тема 1.4. Моделирование - одно из основных понятий кибернетики Определение кибернетики и ее основных понятий
- •Структура кибернетики
- •Принципы построения кибернетических систем различных прикладных направлений
- •Тема 1.5. Математические методы в моделировании экономических систем Предмет, цели и задачи курса
- •Математические методы в моделировании экономических систем
- •История кибернетики и информационных наук
- •Главное в содержательном модуле 1
- •Семинар № 1. Моделирование как метод исследования
- •Итоговые тестовые задания к содержательному модулю 1
- •Контрольные вопросы к содержательному модулю 1
- •Содержательный модуль 2. Моделирование в экономической сфере
- •Тема 2.1. Системные свойства экономики
- •Основные системные свойства экономики
- •Структуры и модели рыночной экономики
- •Тема 2.2. Моделирование и принятие решений Принятие решений
- •Методы обоснования решений
- •Количественные методы позволяют установить насколько один результат лучше другого.
- •Тема 2.3. Критерии качества и критерии принятия решений
- •Требования, предъявляемые к критериям качества
- •Классификация и формы критериев качества Классификация критериев качества
- •Математические формы критериев качества
- •Статистические задачи
- •Тема 2.4. Примеры математических моделей экономических систем
- •Часть 1.Модель определения характеристик смо.
- •Часть 2.Модель определения экономической эффективности смо.
- •Модели динамических систем Модель динамического звена первого порядка
- •Модель динамического звена второго порядка
- •Модель экономического роста
- •Модели финансовых операций
- •Первая модель
- •Вторая модель
- •Третья модель
- •Четвертая модель
- •Пятая модель
- •Шестая модель
- •Тема 2.5. Имитационное моделирование на основе метода статистических испытаний Метод статистических испытаний (метод Монте-Карло)
- •Исследование смо с применением метода статистических испытаний
- •Методика и пример формирования простейшего потока
- •Главное в содержательном модуле 2
- •Семинар № 2. Моделирование в экономической сфере
- •Итоговые тестовые задания к содержательному модулю 2
- •Контрольные вопросы к содержательному модулю 2
- •Список литературы к модулю I
- •Модуль II.
- •Основные категории информации – данные и знания
- •Основные свойства информации
- •Виды информации
- •Основные требования, предъявляемые к качеству информации
- •Классификация информации
- •Тема 3.2. Экономическая информация и ее классификация Экономическая информация
- •Экономическая семиотика
- •Основные элементы системы передачи информации
- •Тема 3.3. Измерение количества информации Основные подходы к измерению количества информации
- •Объемный метод измерения количества информации
- •Энтропийный подход к измерению количества информации
- •Вопрос 2: Число х больше шести?
- •Вопрос 3: Число х меньше шести?
- •Количество информации, получаемое от отдельного сообщения
- •Семантический подход к определению количества информации
- •Тема 3.4. Ценность информации Определение ценности информации
- •Человек и информация
- •Бытовые – искажение информации в отчетах, в докладах начальству, в отношениях мужчины и женщины, и т.П.
- •Тема 3.5. Информационные модели и системы
- •Главное в содержательном модуле 3
- •Семинар № 3. Информация и информационные модели.
- •Итоговые тестовые задания к содержательному модулю 3
- •Контрольные вопросы к содержательному модулю 3
- •Содержательный модуль 4.
- •Реализация управления
- •Разомкнутые системы управления
- •Внешние и внутренние возмущения
- •Анализ свойств разомкнутой системы управления
- •Тема 4.2. Замкнутые системы управления
- •Коэффициенты передачи и передаточные функции замкнутой системы управления
- •Анализ свойств замкнутой системы управления
- •Выводы:
- •Типы обратных связей и сферы их применения Обратные связи могут быть:
- •Тема 4.3. Классификация систем управления и виды задач управления Классификация систем управления
- •Виды задач управления
- •Понятие гомеостазиса
- •Тема 4.4. Закон необходимого разнообразия и его следствия для систем управления Энтропия систем и закон необходимого разнообразия
- •Свойства систем управления, основанные на законе необходимого разнообразия
- •Тема 4.5. Управление сложными системами Иерархические системы управления
- •Централизованное и децентрализованное управление сложными системами
- •Анализ децентрализованных систем управления
- •Главное в содержательном модуле 4
- •Семинар № 4. Модели управления.
- •Итоговые тестовые задания к содержательному модулю 4
- •Контрольные вопросы к содержательному модулю 4
- •Список литературы к модулю II
- •Модуль III.
- •Оптимизационные задачи
- •Оптимизация систем массового обслуживания
- •Пример решения задачи оптимизации смо.
- •Оптимизация систем управления запасами
- •Тема 5.2. Оптимальное распределение ресурсов между несколькими этапами и между несколькими объектами Последовательная (многоэтапная) оптимизация с использованием метода динамического программирования
- •Уравнение оптимальности Беллмана имеет вид
- •Оптимизация маршрута
- •Оптимальное распределение ресурсов между несколькими объектами
- •Приравниваем производные нулю
- •Тема 5.3. Наилучшие решения в условиях частичной и полной неопределенности Игры с «природой»
- •Наилучшие решения в условиях частичной неопределенности
- •Наилучшее решение в условиях полной неопределенности
- •Матрица выигрышей
- •Тема 5.4. Наилучшие решения в условиях многокритериальности
- •Главное в содержательном модуле 5
- •Семинар № 5. Модели оптимизации.
- •Итоговые тестовые задания к содержательному модулю 5
- •Контрольные вопросы к содержательному модулю 5
- •Содержательный модуль 6. Модели интеллектуализации
- •Тема 6.1. Основные положения построения систем искусственного интеллекта
- •Зависимость типа системы управления от сложности объекта управления и влияния случайных факторов
- •История систем ии
- •Виды неопределенностей
- •Тема 6.2. Нечеткие системы
- •Нечеткие системы в управлении
- •Тема 6.3. Нейронные сети Принципы построения и основные свойства нейронных сетей
- •Представление знаний в нейронных сетях
- •Применение нейронных сетей в экономике
- •Пример решения задачи прогнозирования
- •Тема 6.4. Экспертные системы Принципы построения и функционирования экспертных систем
- •Пример применения экспертных систем в экономике и финансах – экспертная система для кредитных операций
- •Представление знаний в экспертных системах
- •Тема 6.5. Генетические алгоритмы
- •Главное в содержательном модуле 6
- •Семинар № 6. Модели интеллектуализации.
- •Итоговые тестовые задания к содержательному модулю 6
- •Контрольные вопросы к содержательному модулю 6
- •Список литературы к модулю III
- •Модуль IV моделирование систем массового обслуживани
- •Содержательный модуль 7. Системы массового обслуживания в экономике
- •Тема 7.1. Основные характеристики и задачи исследования смо
- •Основные понятия, связанные с системами массового обслуживания
- •Структурная схема простой смо. Основные обозначения. Характеристики важнейших параметров Структурная схема простой смо
- •Основные обозначения
- •Характеристики важнейших параметров
- •Задачи исследования смо
- •Методология разработки аналитических моделей смо
- •Обозначения моделей смо
- •Тема 7.2. Классификация смо
- •Тема 7.3. Потоки событий Характер величин и процессов в смо
- •Смо с детерминированными потоками
- •Случайные потоки событий
- •Тема 7.4. Марковские случайные процессы Графы состояний смо
- •Марковские процессы
- •Стационарный режим динамического процесса
- •Законы распределения, определяющие описание и формирование простейшего потока
- •Закон Пуассона
- •Исходные данные
- •Алгоритм решения задачи
- •Решение
- •Экспоненциальный (показательный) закон распределения
- •Закон равномерной плотности
- •Тема 7.5. Уравнения Колмогорова Дифференциальные и алгебраические уравнения Колмогорова
- •Общие формулы решения системы алгебраических уравнений Колмогорова для схемы ''рождения и гибели''
- •Тема 7.6. Модель Эрланга Одноканальная смо с отказами
- •Многоканальная смо с отказами
- •Главное в содержательном модуле 7
- •Семинар № 7. Моделирование систем массового обслуживания.
- •Итоговые тестовые задания к содержательному модулю 7
- •Контрольные вопросы к содержательному модулю 7
- •Содержательный модуль 8. Анализ и синтез системы массового обслуживания Характеристика задач анализа и синтеза смо
- •Определение вероятностей отказа и обслуживания Основные формулы для смо Эрланга
- •Пример расчетов по формулам Эрланга
- •Построение графиков вероятности отказа и обслуживания на основе расчетных данных
- •Построение графиков вероятностей отказа и обслуживания на основе табличных данных
- •Графики вероятностей отказа
- •Графики вероятностей обслуживания
- •Определение показателей качества смо с отказами
- •Показатели качества обслуживания заявки
- •Показатели качества обслуживания заявки
- •Пример расчета характеристик смо с ожиданием
- •Расчетные параметры:
- •Показатели качества функционирования
- •Показатели качества обслуживания заявки
- •Компьютерные программы и таблицы вероятностей отказа для смо с ограниченным временем ожидания
- •Сопоставление смо с отказами и смо с ожиданием
- •Тема 8.3. Методика оценки экономической эффективности смо Постановка задачи оценки экономической эффективности
- •Уравнения блока оценки экономической эффективности
- •Уравнения полной модели оценки экономической эффективности смо
- •Модель смо
- •Блок оценки экономической эффективности
- •Вариант №2 кафе «десерт»
- •Определение показателей экономической эффективности смо на момент окупаемости Результаты расчетов
- •Составление итоговой таблицы результатов расчетов по оценке экономической эффективности смо
- •Сопоставление вариантов смо по основным экономическим характеристикам
- •Тема 8.5. Синтез смо и принятие решения об инвестировании Составление таблицы результатов расчетов по оценке экономической эффективности смо
- •Ранжирование вариантов и выводы
- •Определение взаимосвязи параметров смо с экономическими параметрами системы
- •Главное в содержательном модуле 8
- •Семинар № 8. Анализ и синтез систем массового обслуживания.
- •Итоговые тестовые задания к содержательному модулю 8
- •Контрольные вопросы к содержательному модулю 8
- •Список литературы к модулю IV
- •Итоговые контрольные вопросы по курсу
- •Приложения п.1. Задание на подготовку реферата «Замкнутые системы управления»
- •П.2. Задание на подготовку реферата «Системы массового обслуживания»
- •Часть 1. Определение характеристик смо.
- •Вероятность обслуживания
- •Часть 2. Оценка экономической эффективности смо.
- •Результаты расчетов
- •П.3. Равномерно распределенные случайные числа
- •П 4. Вероятности отказа для смо Эрланга
- •П 5. Компьютерные программы для смо Эрланга п 5.1. Программы на языке Паскаль
- •П.5.3. Программа на языке Visual Basic для расчета экономической эффективности смо
- •П 6. Вероятности отказа для смо с ограниченным временем ожидания
- •П 7. Компьютерная программа для смо с ограниченным временем ожидания
- •Литература
Тема 4.5. Управление сложными системами Иерархические системы управления
Одной из разновидностей сложных систем являются иерархические системы управления. Они построены по принципу многоуровневой системы, в которой подсистемы низших уровней подчинены подсистемам более высоких уровней, либо входят в их состав. В качестве примера иерархических структур с включением одних компонентов в состав других может быть приведена книга, которая состоит из частей, разделов, глав, параграфов.
Примером иерархических систем с подчинением являются:
предприятия, состоящие из цехов, участков, бригад;
банк со своими отделениями;
университет с факультетами и кафедрами;
государство с областями и районами и т.д.
Цель построения иерархических систем состоит в том, чтобы уменьшить сложность управления системой. Это достигается тем, что задачи управления распределяются между уровнями и подсистемами, в результате чего каждая подсистема имеет свои управляющие органы.
Иерархической системе – университет, факультет, кафедра, – соответствует трехуровневая система управления – ректорат, деканат и заведующие кафедрами. В такой системе управляющие органы низшего уровня (кафедры) выполняют относительно простые локальные функции управления. Управляющие органы второго уровня (деканаты) выполняют функции управления, связанные, в частности, с согласованием работы подсистем третьего уровня (кафедр). Орган управления всей системой (ректорат) решает наиболее масштабные (глобальные) задачи управления и, в частности, задачи согласования работы подсистем второго уровня.
Информация от низших уровней к высшим передается в агрегированном (обобщенном) виде.
Иерархические системы управления имеют следующие преимущества:
возможность решения простых локальных задач на низшем уровне;
значительное сокращение потоков информации в результате ее агрегирования при передаче от низших звеньев к высшим;
возможность целесообразного сочетания локальных и глобальных критериев оптимальности;
повышение надежности управления за счет определенной избыточности;
гибкость управления;
уменьшение возможности ошибочных решений управляющих органов высших уровней в результате конкретизации решений по мере продвижения их сверху вниз.
Связи между подсистемами в иерархической структуре могут быть горизонтальными и вертикальными. Вертикальные связи обеспечивают взаимодействие между подсистемами низших и высших уровней. Горизонтальные связи позволяют координировать работу подсистем одного уровня.
По иерархическому принципу строятся практически все системы управления сложными техническими, экономическими, организационными и биологическими системами.
Централизованное и децентрализованное управление сложными системами
Управление сложными системами может быть:
централизованным;
децентрализованным;
комбинированным.
Пример централизованного управления в иерархических системах – назначение губернаторов областей президентом страны. Пример децентрализованного управления – выборы губернатора законодательным органом или населением области.
Комбинированное управление строится на сочетании принципов централизованного и децентрализованного управления. Примером такого управления является схема, при которой президент предлагает кандидатуру губернатора, а законодательное собрание области утверждает его путем выборов. Следует отметить, что системы, построенные на сочетании централизации и децентрализации, являются наиболее распространенными. Вместе с тем существуют и полностью централизованные и децентрализованные системы.
Выбор степени централизации является сложной проблемой и решается в соответствии с конкретной ситуацией. Мировая практика демонстрирует примеры успешного применения централизованных систем и неуспешного применения децентрализованных и наоборот – успешного функционирования децентрализованных систем и неуспешного – централизованных.
Примерами успешного применения принципа централизации является построение Единой энергетической системы Союза и вычислительной сети Интернет. На принципе децентрализации успешно функционирует децентрализованная рыночная экономическая система.
Централизованная плановая экономическая система Союза продемонстрировала высокую эффективность в годы войны и оказалась неэффективной в послевоенные годы в условиях конкуренции со странами, имеющими рыночную экономику.
Полным крахом закончилась попытка построения вычислительной системы Союза на основе децентрализованных АСУ предприятий и организаций.
Считается, что преимущества и недостатки централизованного управления состоят в следующем.
Преимущества – вся информация поступает в единый центральный орган управления. В этом органе вырабатываются основные управляющие воздействия для всей системы. При этом в принципе, можно достичь:
хорошей согласованности всех звеньев системы;
четкой реализации ими общей цели управления;
высокой степени определенности и надежности их функционирования;
и, как следствие, устойчивости системы в целом.
Недостатки централизованного управления сводятся к следующему:
центральному органу зачастую сложно оценить характер изменений, происходящих во внешней среде, окружающей ту или иную (особенно удаленную) подсистему;
слишком велик объем информации, поступающий в центральный орган, поэтому решения оказываются либо недостаточно обоснованными, либо запоздалыми, неоперативными;
большие масштабы влияния ошибочных решений.
Децентрализованное управление является альтернативой централизованному управлению. При этом каждая подсистема осуществляет автономно сбор и переработку информации, необходимой для выработки управленческих решений, решения принимаются и реализуются подсистемой также автономно. Естественным требованием при этом является согласованность целей управления подсистемами и системой в целом. В идеале, казалось бы, реализация оптимального управления подсистемами должна была бы привести к оптимальному управлению системой в целом. Однако, учитывая эмерджентность систем, т.е. не сводимость свойств целого к сумме свойств составляющих частей, оптимальное функционирование системы отнюдь не обеспечивается автоматически за счет оптимального функционирования входящих в нее подсистем. Поэтому децентрализованное управление, т.е. полностью автономное управление системами, не всегда обеспечивает реализацию общих целей, поставленных перед системой.
Еще раз отметим, что большинство реальных сложных систем с иерархической структурой сочетают в управлении принципы централизации и децентрализации.
