
- •Оглавление
- •6 Лабораторная работа № 6 51
- •7 Включить рс 62
- •8 Приложение 1 64
- •9 Приложение 2 64 предисловие
- •Лабораторная работа №1
- •1.1Определение удельных электрических сопротивлений твердых диэлектриков
- •Рабочее задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Домашнее задание
- •Описание лабораторной установки
- •Рабочее задание
- •Порядок проведения работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •3Лабораторная работа №3 Определение диэлектрической информации тангенса угла диэлектрических потерь твердых диэлектриков (электроизоляционных материалов) на высоких частотах
- •3.1Домашнее задание
- •3.2Описание лабораторной установки
- •3.3Рабочее задание
- •3.4Порядок проведения работы
- •3.5Обработка результатов измерений
- •3.6Контрольные вопросы
- •4Лабораторная работа №4 Исследование электрической прочности твердых диэлектриков
- •4.1Теоретические основы работы
- •4.2 Задание
- •4.3 Описание экспериментальной установки и методика выполнения работы
- •4.4Меры безопасности
- •4.5 Подготовка стенда к работе
- •4.6 Порядок работы
- •4.7Обработка результатов измерений
- •4.8Контрольные вопросы
- •5 Лабораторная работа № 5 Проводниковые и полупроводниковые материалы
- •5.1Температурные зависимости электрических сопротивлений проводниковых и полупроводниковых материалов
- •5.2Теоретические основы
- •5.3Полупроводниковые материалы: определение и классификация
- •5.4Основные параметры полупроводников
- •5.5Собственные и примесные полупроводники, типы носителей заряда. Собственная проводимость
- •5.6Зависимость подвижности носителей заряда от температуры
- •5.7Зависимость концентрации носителей заряда от температуры
- •5.8Зависимость удельной проводимости от температуры
- •5.9Время жизни носителей заряда и диффузионная длина
- •5.10 Рабочее задание
- •5.11 Описание установки
- •5.12 Порядок выполнения работы
- •6 Лабораторная работа № 6 исследование магнитомягких материалов
- •6.1Методические указания
- •6.2 Теоретические сведения о магнитных материалах и их свойствах
- •6.3Классификация магнитных материалов
- •6.4 Петля гистерезиса
- •6.5Магнитомягкие и магнитотвердые магнитные материалы
- •6.6Методика измерений
- •6.7Устройство и работа автоматизированного стенда
- •6.8 Программное обеспечение стенда
- •6.9Проведение измерений
- •6.10Выполнение работы
- •6.11Порядок работы с компьютером
- •7Включить рс
- •8Приложение 1
- •9Приложение 2
5.3Полупроводниковые материалы: определение и классификация
Полупроводники при комнатной температуре занимают по удельному сопротивлению, имеющему значения 10-6 – 109 Ом.м, промежуточное положение между металлами и диэлектриками. По ширине запрещенной зоны к полупроводникам относят вещества, ширина запрещенной зоны которых лежит в диапазоне 0.1 – 3.0 эВ.
Приведенные данные следует считать ориентировочными, так как они относятся к нормальным условиям, но могут сильно отличаться в зависимости от температуры.
Удельная проводимость полупроводников в сильной степени зависит от вида и количества содержащихся в них примесей и дефектов. Для них характерна чувствительность к свету, электрическому и магнитному полю, радиационному воздействию, давлению и др.
В полупроводниках часто наблюдается смешанный тип химических связей: ковалентно-металлический, ионно-металлический и др. К ним относятся многие химические элементы и химические соединения:
простые вещества: германий, кремний; селен, теллур, бор, фосфор, сера, сурьма, мышьяк и др.;
окислы и сульфиды многих металлов: NiO, Cu2O, CuO, CdO, PbS и др.;
тройные соединения: CuSbSr, CuFeSe2, PbBiSe3 и др.;
твердые растворы GeSi, GaAs1-x Px и др.;
органические красители и другие материалы: антрацен, фталоцианин, нафталин и другие.
Полупроводники могут быть жидкими или твердыми, кристаллическими или аморфными.
5.4Основные параметры полупроводников
Из электрофизических параметров важнейшими являются: удельная электрическая проводимость (или величина обратная ей — удельное электрическое сопротивление), концентрация электронов и дырок, температурные коэффициенты удельного сопротивления, ширина запрещенной зоны, энергия активации примесей, работы выхода, коэффициента диффузии носителей заряда и другие. Для некоторых применений важны коэффициент термо-ЭДС и коэффициент термоэлектрического эффекта, коэффициент Холла и т.п.
К фундаментальным параметрам относятся плотность, постоянная кристаллической решетки, коэффициент теплопроводности, температура плавления и др.
5.5Собственные и примесные полупроводники, типы носителей заряда. Собственная проводимость
Свободными носителями заряда в полупроводниках, как правило, являются электроны, возникающие в результате ионизации атомов самого полупроводника (собственная проводимость) или атома примеси (примесная проводимость). В некоторых полупроводниках носителями заряда могут быть ионы. На рисунке 2 показана атомная модель кремния и энергетическая диаграмма собственного полупроводника, в котором происходит процесс генерации носителей заряда.
а)
б) Рис. 2. Атомная модель кремния-а) и энергетическая диаграмма собственного полупроводника-б) |
При абсолютном нуле зона проводимости пустая, как у диэлектриков, а уровни валентной зоны полностью заполнены. При повышении температуры, под действием облучения, сильных электрических полей и т.д., некоторая часть электронов валентной зоны переходит в зону проводимости. Энергия Wo в случае беспримесного полупроводника, равна ширине запрещенной зоны и называется энергией активации. В валентной зоне остается свободное энергетическое состояние, называемое дыркой, имеющей единичный положительный заряд.
При отсутствии электрического поля дырка, как и электрон, будет совершать хаотические колебания, при этом происходят и обратные переходы электронов из зоны проводимости на свободные уровни валентной зоны (рекомбинация). Эти процессы условно показаны на Рис. 3.
Рис. 3. Процессы генерации и рекомбинации в полупроводнике
Электропроводность, возникающая под действием электрического поля за счет движения электронов и в противоположном направлении такого же количества дырок, называется собственной. В удельную проводимость полупроводника дают вклад носители двух типов - электроны и дырки
,
где e – заряд электрона;
n и n — концентрация и подвижность электронов;
p и p — концентрация и подвижность дырок.
Для собственного полупроводника концентрация носителей определяется шириной запрещенной зоны и значением температуры по уравнению Больцмана
то есть при 0< kT <Wo переброс через запрещенную зону возможен. В собственном полупроводнике концентрация электронов ni равна концентрации дырок pi, ni = pi , ni + pi = 2ni .
Подвижность носителей заряда представляет скорость, приобретаемую свободными электронами или ионами в электрическом поле единичной напряженности
,
[μ]=м2/(В
. с).
Подвижность дырок существенно меньше, чем подвижность электронов. Подвижности электронов и дырок в некоторых полупроводниках приведены в приложении 1.
Примесная проводимость. Поставка электронов в зону проводимости и дырок в валентную зону может быть за счет примесей, которые могут ионизоваться уже при низкой температуре. Энергия их активации значительно меньше энергии, необходимой для ионизации основных атомов вещества. Примеси, поставляющие электроны в зону проводимости, занимают уровни в запретной зоне вблизи дна зоны проводимости. Они называются донорными. Примеси, захватывающие электроны из валентной зоны, располагаются на уровнях в запретной зоне вблизи потолка валентной зоны и называются акцепторными. На рисунке 4 показаны энергетические диаграммы полупроводника, содержащего донорные и акцепторные примеси.
а) б) Рис. 4 Энергетические диаграммы полупроводников, содержащих донорные – а) и акцепторные – б) примеси
|
Общее выражение для удельной электрической проводимости полупроводника с примесями можно записать так
|
где первое слагаемое определяет собственную, а второе - примесную проводимости.