Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
14 шрифт. Часть 1.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
2.57 Mб
Скачать

4.1. Задачи для самостоятельного решения

1. Доказать следствие 4.1.

2. Доказать, что если - собственный вектор некоторой матрицы, то и вектор , где - любое, не равное нулю число, также является собственным вектором, соответствующим тому же собственному значению, что и -

3. Доказать, что система векторов, состоящая из собственных векторов, соответствующих попарно различным собственным значениям некоторой матрицы А, является линейно независимой.

4. Известно следующее свойство определителя: для любых двух квадратных матриц С, В одного порядка -Пользуясь этим свойством, доказать, что собственные значения обратной матрицы равны обратным величинам для собственных значений матрицы А.

5. Доказать: нуль является собственным значением квадратной матрицы А, если и только если А – вырождена.

6. Пусть А – положительная квадратная матрица. Тогда любой ее неотрицательный собственный вектор является положительным и соответствует максимальному собственному значению матрицы А.

7. Пусть А – положительная квадратная матрица. Тогда любые два ее положительных собственных вектора и линейно зависимы, т.е. для некоторого положительного числа .

8. Для данной матрицы А найти все ее собственные значения и собственные векторы, им соответствующие.

а) б) в) г) ; д)

4.2. Ответы, указания, решения

  1. Указание. Утверждение непосредственно проверяется по определению.

  2. Доказательство. Докажем индукцией относительно числа векторов в системе. Для одного вектора утверждение следует из задачи 8 п.1.3. Предположим, что утверждение верно для систем с векторами. Пусть - попарно различные собственные значения матрицы А, - собственные векторы, им соответствующие. Если система векторов - линейно зависима, то нулевой вектор представим в виде ненулевой комбинации этих векторов: - Умножим обе части этого равенства слева на матрицу :

или

.

Так как по индуктивному предположению система векторов линейно независима, то из последнего равенства следует, что все коэффициенты … , равны нулю. Но тогда , ибо все числа , ,…, отличны от нуля. Следовательно, , т.е. . Получено противоречие, поскольку рассмотренная комбинация векторов ненулевая.

  1. Доказательство. Поскольку предполагается, что обратная матрица существует, то матрица А не имеет нулевого собственного значения (см. задачу 5 и следствие 2.2). Предположим, что - собственное значение матрицы А. Это равносильно равенству (теорема 4.1). Разделив каждую строку матрицы на , получим равенство . Теперь умножим обе части этого равенства на :

И, опять таки, по теореме 4.1 последнее равенство равносильно тому, что - собственное значение матрицы . Утверждение доказано.

  1. Указание: воспользоваться следствием 1.3.

  2. Доказательство. Согласно теореме 4.2 и следствию 4.1, существует положительный вектор , такой, что . Пусть теперь - произвольный неотрицательный собственный вектор матрицы А, т.е. для некоторого собственного значения . Если -я координата в равна нулю, то произведение -й строки матрицы А на было бы равно нулю, что невозможно ввиду , и . Поэтому - положительный собственный вектор. Применяя теоремы 1.1 и 1.14, с одной стороны, имеем:

С другой стороны,

Откуда

.

Но ввиду того, что . Поэтому , что и требовалось доказать.

  1. Доказательство. Векторы и соответствуют максимальному собственному значению матрицы А (см. задачу 6), т.е. , . Обозначим через положительное число, равное наименьшему из чисел , где , - -е координаты векторов и соответственно. Тогда , причем хотя бы одна координата вектора равна нулю (согласно выбору ). Но

что означает, что - собственный, не являющийся положительным, неотрицательный вектор матрицы А, что \будет противоречить утверждению задачи 6, если только - ненулевой. Поэтому , что и требовалось доказать.

8. Решение. Для определения собственных значений матрицы А составим характеристическое уравнение :

.

Так как определитель треугольной матрицы равен произведению элементов на главной диагонали, то данное уравнение равносильно уравнению , откуда получаем три собственных значения , . Для определения собственных векторов, им соответствующих, необходимо решить три однородные системы линейных уравнений Применим алгоритм метода Гаусса для решения первой из них:

.

Итак, все собственные векторы, соответствующие имеют вид , где - любое число. Аналогично устанавливается, что все собственные векторы, соответствующие , имеют вид , где - любое число. Решим последнюю систему:

Итак, - базисные переменные, - свободная переменная:

.

Поэтому собственные векторы, соответствующие , имеют следующий вид: , - любое число.