Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции Арх по светофизике.doc
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
10.09 Mб
Скачать

Лекция № 2 Глаз и его работа.

При восприятии объектов наблюдения глаз человека затрачивает определенные усилия. Эти затраты тем значительнее, чем хуже условия зрительного восприятия. и наоборот, чем более световая среда приспособлена к работе глаза, тем меньше зрительная система затрачивает биологической энергии.

Создание световой среды, наиболее приспособленной к потребностям глаза, к деятельности человека - основная задача архитектурной светофизики. Чтобы сознательно подходить к решению такой задачи, архитектуру необходимо иметь хотя бы общее представление о строении глаза и функционировании его систем.

Глаз – удивительный орган со сложным строением и очень сложной и важной функцией. В задачи органа зрения человека входит обнаружение различия в яркости, различать мелкие детали, воспринимать цвет, форму, величину, характер поверхности, движение и мерцание. Полученная таким образом информация передается в мозг, где происходит ее глубокая переработка и анализ. В результате у человека возникают соответствующие ощущения, т.е. происходит чувственное познание внешнего мира. Человек работает, отдыхает, любит, радуется, грустит – все эти состояния возможны благодаря органам чувств, среди которых зрение играет основную роль.

Однако значение зрительного органа для человека гораздо важнее, чем просто орган, подобно «почтальону» передающий информацию.

Так например, ученные провели такой опыт. Детенышей шимпанзе выращивали в темноте и лишь на короткое время включали слабый рассеянный свет. В результате сдвиги в худшую сторону касались не столько зрения, сколько самого мозга. Условные рефлексы у таких животных возникают намного медленнее, чем у животных, живших в обычной обстановке. А причина в том, что «у животных лишенных зрительных ощущений, соответствующие нейроны не развивались в биохимическом отношении», - как следует из интереснейших исследований работы мозга видного физиолога Хозе Дельгадо.

Следовательно, зрение не только связано с нервной системой человека и влияет на ее функционирование, но и имеет большое значение для нормальной работы мозга. Физиология второй половины ХХ века на основании многочисленных экспериментов четко определила: «Глаз – это часть мозга, выдвинутая на периферию», т.к. уже на уровне сетчатки глаза происходит очень эффективная переработка информации. Итак, от состояния световой среды окружающего пространства, ее качества зависят мыслительные способности мозга.

Строение глаза

Внешняя оболочка глазного яблока, имеющего близкую к сферической форму, - склера (греч. – твердый) – представляет собой твердую, белую, почти непрозрачную оболочку (рис. 1). Склера обеспечивает глазу сохранение формы и защищает его внутренние среды от внешних воздействий.

В передней части глазного яблока склера переходит в более выпуклую и совершенно прозрачную оболочку, называемую роговицей. От нее в основном зависит оптическая сила глаза благодаря ее большой изогнутости и тому, что ее передняя поверхность, обычно соприкасающаяся с воздухом, является той единственной поверхностью раздела, на которой происходит заметное изменение показателя преломления.

Как видно из рис. 1, следующим за склерой внутренним слоем является сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих веществами глаз. В передней части сосудистая оболочка переходит в радужную оболочку, состоящую из кровеносных сосудов,

Височная сторона

Носовая сторона.

Рис. 1. Горизонтальный разрез правого глаза человека.

мышечных волокон и пигментных клеток. От цвета большинства пигментных клеток зависит «цвет» глаз.

В центре радужной оболочки имеется отверстие, называемое зрачком, который играет роль, подобную диафрагме в фотографическом аппарате. Система радиальных и кольцевых мышц радужной оболочки изменяет диаметр отверстия зрачка, что, в свою очередь, регулирует яркость оптического изображения на сетчатке.

Здесь следует отметить интересную деталь – радужная оболочка тесно связана нервными волокнами с центрами головного мозга, которые руководят работой всех внутренних органов и систем организма. Их функционирование (нормальное - ненормальное, здоровое – нездоровое) посредством этой связи отражается на характере рисунка и пигментации радужной оболочки, что позволяет довольно-таки точно определить вид заболевания, т.е. поставить диагноз. Это направление в медицине называется иридодиагностикой.

Непосредственно за радужной оболочкой по оси зрачка расположен эластичный хрусталик, который подвешен к внутренним стенкам глазного яблока специальными цилиарными мышцами, изменяющими его кривизну и фокусирующими взгляд на различно расположенные предметы. Хрусталик представляет собой прозрачную двояковыпуклую, упругую линзу и имеет назначение, подобное системе линз в объективе фотоаппарата.

Пространство за хрусталиком заполнено студенистым, совершенно прозрачным веществом – стекловидным телом.

Роговица, глазные среды и эластичный хрусталик образуют эффективную систему фокусировки, создающую четкое изображение на внутреннем слое оболочки глаза, называемого сетчаткой. Именно в сетчатке формируется информация о цвете, размерах, движении и других характеристиках изображения. Эта информация, в сочетании с другими сенсорными данными, поступающими в данный момент и хранящимися в памяти, обеспечивает зрительное восприятие.

В сетчатке глаза имеется 127 млн светочувствительных клеток – фоторецепторов. От них к мозгу идут 800 тыс. нервных волокон. Следовательно, на каждые 150 клеток одно волокно – это значит в сетчатке осуществляется анализ информации. По нервам сигналы поступают в различные отделы мозга, а затем в зрительную кору полушарий. Из визуального сигнала на каждом этаже извлекается самое существенное, чтобы потом на более высоком уровне с этой информацией удобно было оперировать.

Строение сетчатки чрезвычайно сложно. Обычно в ней различают десять абсолютно прозрачных слоев, в которых расположены структуры, производящие первичную обработку информации. Во втором от сосудистой оболочки слое находятся два вида фоторецепторов – палочки и колбочки, осуществляющие преобразование световых сигналов в электрическое и химическое возбуждение. Это преобразование заключается в следующем. Кванты света поглощаются специальным веществом – зрительным пигментом, находящимся в палочках (родопсин) и в колбочках (иодопсин). При этом происходит химическая реакция, в результате которой появляется электрический сигнал. Затем вещество меняет свою структуру и обесцвечивается. Через некоторое время с помощью элементов, поступающих извне, зрительный пигмент возвращается в исходное состояние – иными словами, происходит его регенерация.

Палочки и колбочки распределены по сетчатке очень неравномерно. В центральной части (в районе пересечения оптической оси с задней стенкой глазного яблока) преобладают колбочки, которые обеспечивают цветовое зрение. В месте пересечения зрительной оси и сетчатки (рис. 1) расположена центральная ямка (точка фиксации) – область максимальной остроты зрения (или наилучшего видения). В точке фиксации формируется изображение при движении глаза и головы, когда детали объекта должны быть рассмотрены с наибольшей точностью. В центральной ямке сосредоточены только колбочки.

Н а периферии преобладают палочки, которые очень чувствительны к свету, но не различают цветов. Поэтому в период сумерек и в ночное время, т.е. когда уровни освещенности малы, работают только палочки. Колбочки же гораздо менее чувствительны к свету, чем палочки. И они рассчитаны на восприятие высоких уровней освещенности, т.е. работают в дневное время суток.

В соответствии с принятыми в настоящее время представлениями в сетчатке глаза имеются три вида колбочек. Один вид воспринимает лучи красного цвета, другой – зеленого и третий – синего, т.е. каждый из этих видов колбочек чувствителен в своей области спектра. Подобный аппарат формирует цветовое зрение человека.

Б

Рис. 2. Схема расположения

мышц глаза (вид пра-

вого глаза сверху)

ольшое значение для восприятия окружающего мира и настройки глаз на наблюдаемый предмет имеет глазодвигательная система (рис. 2), состоящая из трех пар мышц: вертикальная пара (верхняя 1 и нижняя 2 мышцы); горизонтальная (внутренняя 3 и наружная 4 мышцы); две косые мышцы (верхняя 5 и нижняя 6). При помощи работы этих мышц (сокращение или расслабление) глазное яблоко может поворачиваться на определенный угол вокруг центра вращения. Механизм вращения глаз чрезвычайно сложен и точен, т.к. в норме оси обоих глаз должны быть согласованно направлены в одну точку - точку фиксации.