
1.3.2. Применение первого начала термодинамики к различным процессам
При изохорном процессе ΔU = 0. Уравнение первого начала термодинамики (1.4.) имеет вид:
Qv = ΔU. (1.7)
Поскольку внутренняя энергия является функцией состояния, для изохорных процессов количество теплоты также не зависит от пути перехода и определяется только начальным и конечным состоянием системы. Из уравнения (1.7) следует, что в изохорном процессе вся поглощаемая теплота расходуется на увеличение внутренней энергии системы.
Прежде чем рассматривать применение первого закона термодинамики к изобарному процессу, познакомимся с широко применяемой термодинамической функцией, называемой ЭНТАЛЬПИЕЙ Н. Она определяется соотноше-нием:
Н = U + РV. (1.8)
Продифференцируем это выражение:
dН = dU + d(РV) = dU + РdV + VdР. (1.9)
Для изобарного процесса dР = 0. Тогда:
dН = dU + РdV. (1.10)
Сравнивая полученное уравнение с (1.6), получим:
δQρ = dН. (1.11)
Соответственно для макропроцессов:
Qρ = ΔН. (1.12)
Как отмечалось в разделе 1.2.2, энтальпия является функцией состояния системы. Значит, в изобарном процессе количество поглощенной или выделенной теплоты не зависит от способа проведения процесса и определяется только начальным и конечным состоянием системы. Из уравнения (1.12) видно, что в изобарном процессе количество теплоты измеряется изменением энтальпии.
При изотермическом процессе внутренняя энергия системы – величина постоянная, ΔU = 0. Тогда уравнение первого начала:
Q = А. (1.13)
Следовательно, при изотермическом процессе поглощенная теплота расходуется только на совершаемую системой механическую работу.
При адиабатном процессе, когда Q = 0, уравнение (1.3) принимает вид:
А = – ΔU. (1.14)
Это означает, что в адиабатном процессе механическая работа может совершаться только за счет убыли внутренней энергии системы.