- •Основы проектирования ракет-носителей.
- •Оглавление
- •Список сокращений
- •Предисловие
- •Введение
- •1. Общие вопросы проектирования
- •1.1. История создания баллистических ракет и ракет-носителей
- •1.1.1. История создания первых ракет на жидких компонентах топлива
- •1.1.2. Становление ракетной промышленности ссср
- •1.1.3. Первые космические полёты
- •1.4. Классификация ракет-носителей
- •1.5. Проектирование и стадии разработки ракет-носителей
- •I стадия разработки
- •II стадия разработки
- •III стадия разработки
- •2. Основные положения теории ракетного движения
- •2.1. Структура многоступенчатой ракеты
- •2.2. Относительные характеристики масс составных частей ракеты
- •2.3. Функциональная связь между относительными характеристиками масс составных частей ракеты
- •2.4. Характеристические скорости ракеты
- •2.5. Удельный импульс
- •2.6. Влияние атмосферного давления на тягу ракетного двигателя
- •2.7. Скорость ракеты с учетом реальных условий полета
- •2.8. Типовая приближенно-оптимальная программа изменения угла наклона траектории ракеты
- •2.9. Уравнения движения рн для поверочных расчётов
- •3. Характеристики и основные проектные параметры ракет-носителей
- •3.1. Характеристики ракет-носителей
- •3.2. Основные проектные параметры ракеты
- •3.3. Выбор основных проектных параметров ракеты
- •3.3.1. Основные проектные параметры, полученные из анализа идеальной скорости ракеты
- •3.3.2. Основные проектные параметры, полученные из анализа потери скорости ракеты от действия гравитационных сил
- •3.3.3. Основные проектные параметры, полученные из анализа потери скорости ракеты от действия аэродинамических сил
- •3.3.4. Основные проектные параметры, полученные из анализа потери скорости ракеты от действия сил, возникающих при изменении давления воздуха на срезе сопла ракетного двигателя
- •3.3.5. Основные проектные параметры многоступенчатых ракет-носителей
- •3.4. Сопоставление значений потерь скорости ракеты
- •4. Сбор и обработка статистических данных по ракетам-носителям
- •5.2.1. Требования по назначению
- •5.2.2. Требования к надежности
- •5.2.3. Требования к эксплуатации, удобству технического обслуживания, ремонту и хранению
- •5.2.4. Требования к транспортабельности
- •5.2.5. Требования к безопасности
- •5.2.6. Конструктивные требования
- •5.2.7. Технико-экономические требования
- •5.2.8. Другие требования
- •8. Оптимальное распределение массы ракеты-носителя по ступеням и расчет стартовой массы ракеты
- •8.2.1. Постановка задачи
- •8.2.2. Решение задачи
- •8.4. Выбор количества ступеней ракеты-носителя
- •8.4.1. Выбор количества ступеней ракеты по критерию минимума стартовой массы
- •8.4.2 Выбор количества ступеней ракеты-носителя из условия функционального назначения ракетных блоков
- •9. Определение предварительных объемно-габаритных характеристик ракет-носителей
- •10. Разработка предварительной компоновочной схемы ракеты-носителя
- •10.1. Методические вопросы разработки предварительной компоновочной схемы ракеты-носителя
- •10.2. Компоновка хвостовых отсеков
- •10.2.3. Компоновочные и силовые схемы хвостовых отсеков
- •10.3. Компоновка топливных отсеков
- •10.3.1. Компоновочные схемы топливных отсеков нижних ступеней рн
- •10.3.2. Компоновочные схемы топливных отсеков верхних ступеней
- •10.3.3. Определение масс и объемов окислителя и горючего
- •10.3.4. Определение геометрических размеров баков
- •10.3.5. Особенности компоновки твердотопливных отсеков
- •10.4. Компоновка переходных отсеков
- •10.4.1. Схема с холодным разделением
- •10.4.2. Схема с горячим разделением
- •10.4.3. Схема с теплым разделением
- •10.5. Компоновка приборных отсеков
- •10.6. Компоновка космических головных частей
- •11. Уточнение компоновочной схемы ракеты-носителя
- •11.1. Уточнение компоновочной схемы ракеты-носителя с последовательным соединением ракетных блоков
- •11.2. Уточнение компоновочной схемы ракеты-носителя с параллельным соединением ракетных блоков
- •11.2.1. Уточнение габаритов и мест сопряжения ракетных блоков
- •11.2.2. Схемы с унифицированными ракетными блоками
- •11.2.3. Схема с неразъемными соединениями ракетных блоков
- •11.2.4. Схема с отдельными блоками горючего и окислителя
- •11.3. Уточнение сбрасываемых элементов ракеты-носителя
- •11.4. Схемы с переливом топлива
- •12 Расчёт масс основных элементов конструкций ракеты-носителя
- •12.1. Предварительный расчет масс основных элементов конструкции ракеты-носителя
- •12.2 Предварительная массовая сводка
- •12.3. Проверка значений конструктивных характеристик ракетных блоков
- •12.4. Проектировочный расчет масс составных частей ракеты-носителя
- •12.4.1. Выбор расчетных случаев
- •12.4.2. Расчет нагрузок, действующих на рн
- •12.4.3. Выбор расчетных сечений ракеты-носителя
- •12.4.4. Расчет осевых сил в сечениях
- •12.4.5. Расчет изгибающих моментов
- •12.4.6. Расчет приведенной сжимающей силы
- •12.4.7. Расчет давления наддува баков
- •12.4.8. Расчет массы баков
- •12.4.9. Уточненные расчеты массы бака
- •12.4.10. Расчет массы сухих отсеков
- •12.4.11. Расчет прочих масс ракеты-носителя
- •12.5. Детальный расчет
- •13. Расчет координат центра масс и моментов инерции ракеты-носителя
- •13.1. Расчет координат центра масс ракеты
- •13.2. Расчет моментов инерции ракеты
- •13.3. Расчетные таблицы
- •13.4. Расчет положения координат центра масс ракеты-носителя по времени полета
- •14. Автоматизация выбора основных характеристик ракет-носителей
- •14.2. Программа для расчета масс составных частей ракеты-носителя и предварительной массовой сводки
- •14.3. Программа для расчета положения координат центра масс и моментов инерции рн
- •14.4. Программа для поверочных расчетов характеристик движения ракет-носителей
- •14.5. Разработка циклограммы запуска ракеты
- •15. Методика разработки твердотельных моделей ракет-носителей
- •15.1. Информационная поддержка жизненного цикла изделий
- •15.2. Особенности разработки твердотельных моделей ракеты
- •15.3. Разработка моделей отсеков ракетных блоков
- •15.3.1. Разработка моделей топливных баков
- •15.3.2. Разработка моделей сухих подкрепленных отсеков
- •15.3.3. Разработка моделей ферменных конструкций
- •15.3.4. Разработка моделей элементов крепления двигателей
- •15.4. Разработка моделей космических головных частей
- •15.5. Разработка модели ракеты космического назначения
- •15.5.1. Сборка ракетных блоков
- •15.5.2. Сборка ракеты и создание анимационной картины разделения составных частей рн в полёте
- •15.6. Определение геометрических и массоинерционных характеристик конструкции ракеты-носителя в системе твердотельного моделирования
- •16. Космические разгонные и апогейные ракетные блоки
- •16.1. Космические разгонные блоки
- •16.2. Апогейные блоки
- •16.3 Методика выбора характеристик разгонного блока при модернизации ракеты-носителя
- •17. Совершенствование средств выведения полезных нагрузок в космос
- •17.1. Создание серии рн различной грузоподъемности на основе унификации ракетных блоков
- •17.2. Модернизация ракет-носителей на базе рн «Союз»
- •17.3. Методика приближенной оценки грузоподъемности рн, составленных из существующих ракетных блоков
- •17.4. Методика оптимизации массы модернизируемых ракетных блоков в составе существующих рн3
- •17.5. Использование возвращаемых ракетных блоков
- •18. Согласование характеристик ракет-носителей, космодрома и стартового комплекса
- •18.3. Согласование характеристик рн с элементами технических и наземных стартовых комплексов
- •18.3.1. Требования к ракетно-космическому комплексу
- •18.3.2. Требования к стартовому комплексу
- •18.3.3. Подготовка ракеты космического назначения на техническом и стартовом комплексах
- •18.4. Согласование схем крепления рн с опорными элементами стартовых сооружений
- •18.5. Согласование характеристик рн с расположением космодрома и азимутами пуска
- •18.6.Морской старт
- •18.7. Воздушные старты
- •18.8. Оценка весовой эффективности воздушных стартов
- •18.8.1. Постановка задачи
- •18.8.2. Определение потребной характеристической скорости для рн при воздушном старте
- •18.8.3. Результаты расчётов и их анализ
- •18.9. Полностью многоразовые многоцелевые авиационно-космические системы
- •18.10. Запуск малогабаритных космических аппаратов
- •Заключение
- •Приложение а рекомендации по выполнению курсовых и дипломных проектов а1. Основные этапы курсового проектирования рн
- •А2. Типовые вопросы, рассматриваемые в дипломных проектах
- •Приложение б пример выполнения курсового проекта и оформления пояснительной записки4
- •Выбор основных характеристик и проектного облика ракеты-носителя
- •Реферат
- •Содержание
- •Введение б
- •Б1 сбор и обработка статистических данных по ракетам-носителям заданного класса
- •Б3 определение потребной характеристической скорости
- •Б4 выбор топлива
- •Б5 определение массы ракетных блоков и стартовой массы ракеты-носителя
- •Б6 предварительная компоновка б6.1 Определение предварительных габаритов ракеты
- •Б8 расчет масс элементов ракеты-носителя
- •Протокол расчета масс элементов конструкций ракеты-носителя
- •Б9 расчет центровочных характеристик и моментов инерции
- •Б10 обоснование и выбор бортовых систем
- •Б10.2 Системы крепления и разделения составных частей ракеты-носителя
- •Б11 конструкция и функционирование ракеты б11.1 Конструкция ракеты-носителя
- •Заключение б
- •443086 Самара, Московское шоссе, 34.
10.3.5. Особенности компоновки твердотопливных отсеков
Твердотопливные отсеки РН представляют собой, по сути, камеры сгорания больших габаритов, в которых располагаются твердотопливные заряды. Корпуса твердотопливных отсеков, в отличие от топливных отсеков с жидкими компонентами топлива, должны выдерживать большие внутренние давления и значительные тепловые потоки. Основные требования, предъявляемые к твердотопливным зарядам (не считая рассмотренных ранее: высокого удельного импульса, высокой плотности, малой стоимости и других требований, которые были рассмотрены в разделе 7), следующие.
1. Обеспечение заданной силы тяги двигателя (достигается за счет горения определенной площади поверхности заряда).
2. Небольшое изменение тяги в процессе работы двигателя (достигается за счет малого изменения общей площади горения твердотопливных зарядов).
3. Малое воздействие высоких температур на силовой корпус двигателя.
4. Малая склонность к трещинообразованию в процессе длительного хранения и горения заряда.
5. Простота технологии изготовления и монтажа заряда.
Форма заряда в значительной степени влияет на значение силы тяги двигателя и изменение ее в процессе горения заряда. Основная причина связана с изменением площади горения, как это схематично показано на рис. 10.14 для трех форм заряда.
Постоянство площади горения (требование 2) обеспечивается только при использовании схемы а). Однако она неприемлема из-за низкой тяги (не удовлетворяет требованию 1).
Из многочисленных возможных форм зарядов лишь немногие по своим характеристикам подходят для ракетных двигателей твердого топлива (РДТТ) ракет-носителей.
Рис. 10.14. Влияние формы заряда на изменение силы тяги двигателя по времени
На рис. 10.15 показаны формы заряда, при использовании которых обеспечивается большая площадь горения и тяга двигателя изменяется незначительно по времени.
Рис. 10.15. Формы зарядов твердого топлива:
а — заряд телескопической формы; б — заряд с продольными щелями;в — заряд со звездообразным каналом
Чтобы исключить прямое воздействие горячих газов на стенку корпуса твердотопливного двигателя, его внутренние поверхности покрываются инертной бронировкой (рис. 10.16). В этом случае корпус можно делать из неметаллических материалов. Изготовление таких корпусов может быть обеспечено намоткой стекловолокна, пропитанного эпоксидной смолой, непосредственно на внешнюю поверхность топливного заряда [15].
Рис. 10.16. Заряд с продольными щелями: 1 — топливо; 2 — бронировка; 3 — центральный канал; 4 — щель
При изготовлении твердотопливных ракетных блоков больших габаритов их корпуса, как правило, делают многосекционными, как это показано на рис. 10.17. На этом рисунке введены следующие обозначения: 1 - днище с воспламенителем; 2 - секция РДТТ; 3 - бронировка зарядов.
Рис. 10.17. Компоновочная схема многосекционного твердотопливного двигателя
Многосекционные корпуса твердотопливных ракетных блоков используются на боковых ускорителях Спейс Шаттл.
В процессе создания РН «Энергия» рассматривался вариант с твёрдотопливными боковыми ускорителями, которые имели следующие характеристики [47]:
- максимальный габаритный диаметр - 3,6 м;
- длина - 44,92 м;
- степень расширения сопла - 2,8;
- масса конструкции - 60 т;
- масса топлива - 460 т;
- масса снаряженного двигателя - 520 т;
- коэффициент весового совершенства - 0,3;
- время работы на установившемся режиме полета - 124 с;
- полное время работы - 138 с;
- максимальное давление в камере сгорания – 6,8 МПа;
- удельный импульс тяги - 2630 м/с;
- средняя тяга -10500 kH.
Топливо двигателя – твердое, смесевое, с высоким удельным весом, которое способно сохранять высокий уровень эластичности при низких температурах. Корпус двигателя – семисекционный, односопловой. В качестве конструкционного материала для корпуса был принят стеклопластиковый вариант. При этом концевые секции предполагалось выполнять методом спирально-кольцевой намотки по схеме "полукокон", остальные секции - методом продольно-поперечной намотки.
Основную сложность в освоении такого двигателя вносили его габариты и масса, которые промышленностью страны по всей технологической цепочке не были освоены. Поэтому решение было принято в пользу ускорителей на жидких компонентах топлива.
В табл. 10.2 представлены статистические данные и расчётные значения некоторых характеристик твёрдотопливных ускорителей, которые использовались или используются в ракетах различного класса.
