
- •Физика металлов
- •Введение
- •I. Строение веществ.
- •1. Межатомное взаимодействие.
- •2. Типы химических связей.
- •3. Кристаллическая структура твердых тел.
- •4. Дефекты кристаллических решеток.
- •4.1 Точечные дефекты решетки
- •4.2 Линейные дефекты кристаллической решетки.
- •4.3 Поверхностные дефекты кристаллической решетки.
- •4.4 Объёмные дефекты кристаллической решетки.
- •4.5 Энергетические дефекты кристаллической решетки.
- •5. Основы теории сплавов.
- •6. Диаграммы состояния сплавов и закономерности Курнакова.
- •7. Строение электронных зон. Проводники, диэлектрики и полупроводники.
- •II. Кристаллизация металлов
- •1. Самопроизвольная кристаллизация
- •2. Несамопроизвольная кристаллизация
- •3. Получение монокристаллов
- •4. Аморфное состояние металлов
- •5. Полиморфизм
- •III. Проводниковые материалы
- •1 Материалы высокой электропроводности.
- •2 Материалы высокого удельного сопротивления.
- •2.1 Сплавы на основе меди.
- •2.2 Никель-хромовые сплавы.
- •2.3 Железохромалюминиевые сплавы
- •2.4 Сплавы на основе благородных металлов.
- •3 Материалы электрических контактов
- •3.1 Зажимные контакты
- •3.2 Цельнометаллические контакты
- •3.3 Материалы разрывных контактов.
- •3.4 Материалы скользящих контактов.
- •IV. Магнитные материалы
- •1. Природа ферромагнетизма.
- •1.1. Доменная структура ферромагнетиков.
- •1.2. Кривая намагничивания
- •2. Основные классы магнитных материалов.
- •2.1. Промышленные магнитомягкие материалы
- •Электротехническая сталь
- •2.2 Магнитомягкие материалы для работы в слабых полях
- •2.3 Магнитомягкие материалы, предназначенные для работы в высокочастотных полях.
- •3. Магнитотвердые материалы
- •3.1 Промышленные магнитотвердые материалы.
- •3.2. Дисперсионно твердеющие сплавы
- •3.3 Деформируемые магнитотвердые материалы.
- •3.4 Магнитотвердые ферриты
- •3.5 Высококоэрцитивные магниты.
3. Кристаллическая структура твердых тел.
Р
ис.
7. Элементарная
решетка
алмаза.
У элементов четвертой группы ковалентная насыщенная и направленная связь, и у каждого атома четыре соседа. Число ближайших соседей принято называть координационным числом K. Элементарную решетку можно представить в виде тетраэдра с одним атомом в центре и четырьмя атомами по вершинам тетраэдра. Кристаллическую решетку с такой элементарной ячейкой имеют элементарный кремний, германий, углерод в модификации алмаза. Этот тип кристаллической решетки принято называть решеткой алмаза.
Рис. 8. Элементарная
ячейка решетки типа NaCl.
При образовании металлической связи кристаллические решетки становятся еще более компактными. Координационные числа K достигают значений 8 и 12. В металлических материалах, как правило, формируются три типа кристаллических решеток: объемноцентрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГПУ). Элементарные ячейки ОЦК, ГЦК и ГПУ решеток показаны на рис. 9.
Рис.9.
Типы кристаллических решеток металлов.
а) Г.Ц.К, б) О.Ц.К.,
в) Г.П.У.
Плотность кристаллической решетки (объем занятый атомами) удобно характеризовать также коэффициентом заполнения Z, т.е. отношением объема занимаемого атомами ко всему объему кристалла, обычно выраженным в процентах. Очевидно, чем выше координационное число K - тем больше плотность упаковки атомов и соответственно коэффициент заполнения кристаллической ячейки Z. Нетрудно вычислить эти параметры для разных типов кристаллических решеток, результаты приведены в таблице 4.
Таблица 4.
Тип решетки |
Простая кубическая |
ОЦК |
ГЦК |
ГПУ |
К |
6 |
8 |
12 |
12 |
Z, % |
52 |
68 |
74 |
74 |
Металлы с плотноупакованной решеткой, как правило, обладают лучшей проводимостью, чем металлы с менее плотноупакованной решеткой. Это связано с тем, что у металлов с плотноупакованной решеткой повышена плотность электронного газа, а следовательно, повышена концентрация основных носителей заряда – свободных электронов.