
- •Физика металлов
- •Введение
- •I. Строение веществ.
- •1. Межатомное взаимодействие.
- •2. Типы химических связей.
- •3. Кристаллическая структура твердых тел.
- •4. Дефекты кристаллических решеток.
- •4.1 Точечные дефекты решетки
- •4.2 Линейные дефекты кристаллической решетки.
- •4.3 Поверхностные дефекты кристаллической решетки.
- •4.4 Объёмные дефекты кристаллической решетки.
- •4.5 Энергетические дефекты кристаллической решетки.
- •5. Основы теории сплавов.
- •6. Диаграммы состояния сплавов и закономерности Курнакова.
- •7. Строение электронных зон. Проводники, диэлектрики и полупроводники.
- •II. Кристаллизация металлов
- •1. Самопроизвольная кристаллизация
- •2. Несамопроизвольная кристаллизация
- •3. Получение монокристаллов
- •4. Аморфное состояние металлов
- •5. Полиморфизм
- •III. Проводниковые материалы
- •1 Материалы высокой электропроводности.
- •2 Материалы высокого удельного сопротивления.
- •2.1 Сплавы на основе меди.
- •2.2 Никель-хромовые сплавы.
- •2.3 Железохромалюминиевые сплавы
- •2.4 Сплавы на основе благородных металлов.
- •3 Материалы электрических контактов
- •3.1 Зажимные контакты
- •3.2 Цельнометаллические контакты
- •3.3 Материалы разрывных контактов.
- •3.4 Материалы скользящих контактов.
- •IV. Магнитные материалы
- •1. Природа ферромагнетизма.
- •1.1. Доменная структура ферромагнетиков.
- •1.2. Кривая намагничивания
- •2. Основные классы магнитных материалов.
- •2.1. Промышленные магнитомягкие материалы
- •Электротехническая сталь
- •2.2 Магнитомягкие материалы для работы в слабых полях
- •2.3 Магнитомягкие материалы, предназначенные для работы в высокочастотных полях.
- •3. Магнитотвердые материалы
- •3.1 Промышленные магнитотвердые материалы.
- •3.2. Дисперсионно твердеющие сплавы
- •3.3 Деформируемые магнитотвердые материалы.
- •3.4 Магнитотвердые ферриты
- •3.5 Высококоэрцитивные магниты.
3.4 Магнитотвердые ферриты
Из магнитотвердых ферритов наиболее известен бариевый феррит BaO´6Fe2O3 (ФБ, ферроксдюр). В отличие от магнитомягких ферритов он имеет не кубическую, а гексагональную решетку с одноосной анизотропией. Высокая коэрцитивная сила обусловлена малым размером зерен и сильной кристаллографической анизотропией. Помимо бариевого феррита используются хромбариевый феррит (ХБ) и кобальтовый феррит
Технология получения магнитотвердых ферритов в общих чертах похожа на технологию получения магнитомягких ферритов. Однако для получения мелкокристаллической структуры, осуществляют очень тонкий помол (как правило, в водной среде), а спекание проводят при относительно невысоких температурах для избежания роста зерен.
Для придания анизотропии магнитных свойств материал текстурируют. Для создания текстуры сметанообразную массу помещают в сильное магнитное поле, которое отключают только после формирования изделия и его полного высыхания. Бариевые анизотропные ферриты маркируются БА, хромобариевые - ХБА, кобальтовые КА. Изотропные, нетекстурированные магниты маркируются БИ, ХБИ и КИ соответственно.
Ферритные материалы значительно дешевле металлических. Вместе с тем у них существенно ниже удельный вес. Высокая коэрцитивная сила позволяет изготавливать магниты с малым отношением длины к поперечному сечению.
К недостаткам магнитотвердых ферритов следует отнести низкую механическую прочность, хрупкость, высокую чувствительность к изменению температуры. Кроме того при охлаждении до – 60°С и повторном нагреве они теряют ферромагнитные свойства.
3.5 Высококоэрцитивные магниты.
К этой группе материалов относят сплавы редкоземельных элементов с кобальтом типа RСo5 или RСо17, а также сплавы железа или кобальта с платиной. Эти материалы обладают рекордной запасенной магнитной энергией, однако, их широкому применению мешает высокая стоимость.