
- •Сети связи следующего поколения
- •1. Лекция: Определение ссп, основные характеристики, услуги ссп
- •Особенности современных услуг связи
- •Особенности инфокоммуникационных услуг
- •Требования к сетям связи
- •Понятие сети ссп и ее базовые принципы
- •Классификация услуг для сетей ссп
- •Базовые услуги
- •Дополнительные виды обслуживания (дво)
- •Услуги доступа
- •Информационно-справочные услуги
- •Услуги vpn
- •Услуги мультимедиа
- •2. Лекция: Архитектура ссп
- •3. Лекция: Основные протоколы, используемые в сетях следующего поколения
- •Протоколы rtp, rtcp, udp
- •Протокол н.323
- •Протокол sip
- •Протокол mgcp
- •Протокол megaco/h.248
- •Сравнение протоколов (с позиции применения в ссп)
- •Протокол bicc
- •Транспортировка информации сигнализации(sigtran)
- •Протокол передачи информации управления потоком (sctp)
- •Пользовательский уровень адаптации isdn (iua)
- •Пользовательский уровень адаптации мтр уровня 2 (m2ua – mtp2 –User Adaptation Layer)
- •Пользовательский уровень адаптации м2ра
- •Пользовательский уровень адаптации мтр уровня 3 (m3ua)
- •Пользовательский уровень адаптации sccp (sua)
- •4. Лекция: Оборудование ссп
- •Основные характеристики Softswitch.
- •Поддерживаемые протоколы
- •Поддерживаемые интерфейсы
- •Емкость
- •Производительность
- •Протоколы
- •Поддерживаемые интерфейсы
- •5. Лекция: Программный коммутатор Softswitch
- •Транспортная плоскость
- •Плоскость управления обслуживанием вызова и сигнализации
- •Плоскость услуг и приложений
- •Функциональные объекты
- •6. Лекция: Реализация Softswitch .
- •Взаимодействие Softswitch и окс7
- •Оборудование Softswitch в качестве транзитной станции
- •Оборудование Softswitch в качестве распределенной оконечной станции коммутации
- •Оборудование Softswitch в качестве распределенного ssp
- •Оборудование Softswitch в качестве распределенного узла телематических служб
- •7. Лекция: Качество обслуживания .
- •Характеристики производительности сетевого соединения
- •Полоса пропускания
- •Потеря пакетов
- •Категории и классы качества передачи речи
- •Влияние оконечного оборудования и сети на показатели качества речи
- •Функции качества обслуживания Классификация и маркировка пакетов
- •Управление интенсивностью трафика
- •Распределение ресурсов
- •Предотвращение перегрузки и политика отбрасывания пакетов
- •Маршрутизация
- •8. Лекция: Методы обеспечения качества обслуживания Архитектура интегрированных услуг (IntServ)
- •Протокол rsvp
- •Работа протокола rsvp
- •Rsvp-компоненты
- •Стили резервирования
- •Индивидуальное резервирование
- •Общее резервирование
- •Типы услуг
- •Регулируемая нагрузка
- •Гарантированная битовая скорость
- •Масштабируемость протокола rsvp
- •Архитектура дифференцированных услуг DiffServ
- •Формирователи трафика, расположенные на границе сети
- •Cq. Произвольные очереди
- •Wfq. Взвешенные справедливые очереди
- •Wred. Взвешенный алгоритм произвольного раннего обнаружения
- •9. Лекция: Технология mpls
- •Введение в mpls
- •Стек меток
- •Класс эквивалентности пересылки fec
- •Коммутируемый по меткам тракт lsp
- •Принцип работы
- •10. Лекция: Метки и механизмы mpls Метка
- •Дно стека (s)
- •Время жизни (ttl)
- •Экспериментальное поле (CoS)
- •Значение метки
- •Стек меток mpls
- •Инкапсуляция меток
- •Привязка "метка-fec"
- •Режимы операций с метками
- •11. Лекция: Протоколы распределения меток . Протокол ldp Классы эквивалентности пересылки и ldp
- •Основы протокола ldp
- •Протокол cr-ldp
- •Роль rsvp и rsvp-те в mpls
- •Управление трафиком в mpls
- •12. Лекция: Протоколы маршрутизации
- •Метрики ospf
- •Области ospf
- •Принципы работы ospf
- •Протокол is-is
- •Метрики is-is
- •Маршрутизация is-is
- •Использование протокола bgp в mpls
- •Алгоритм Беллмана-Форда
- •Маршрутизаторы bgp
- •Протокол ebgp
- •Протокол ibgp
- •13. Лекция: Инжиниринг трафика. Виртуальные частные сети
- •Основы vpn
- •Функции vpn по защите данных
- •Технологии создания виртуальных частных сетей
- •Vpn на основе туннелирования через ip
- •Применение туннелей для vpn
- •Сравнительный анализ туннелей mpls и обычных туннелей
- •14. Лекция: ims (ip Multimedia Subsystem).
- •Ключевые факторы перехода к ims
- •Стандартизация ims
- •Архитектура ims
- •Транспортный уровень
- •Плоскость управления
- •Уровень приложений
- •Сравнение Softswitch и ims
- •Различия
- •Учебники к курсу
- •Список литературы
11. Лекция: Протоколы распределения меток . Протокол ldp Классы эквивалентности пересылки и ldp
Понятие класс эквивалентности пересылки FEC уже обсуждалось в предыдущих лекциях. Там же говорилось о том, что для переноса через сеть MPLS пакетов, принадлежащих разным FEC, в сети создаются виртуальные тракты LSP, и было показано, как с помощью метки MPLS устанавливается соответствие "пакет-FEC", определяющее, по какому LSP должен быть направлен пакет с этой меткой. В этой лекции речь пойдет о том, каким образом производится распределение меток по всем LSR сети MPLS с использованием протокола LDP (Label Distribution Protocol).
В спецификации LDP к настоящему моменту установлены два типа элементов, с помощью которых может определяться FEC:
Address Prefix – адресный префикс любой длины от нуля до полного адреса;
Host Address – полный адрес хоста.
Решения о назначении меток могут основываться на критериях пересылки, таких как:
одноадресная маршрутизация к получателю;
оптимизация распределения трафика в сети;
многоадресная рассылка;
виртуальная частная сеть VPN;
механизмы обеспечения качества обслуживания QoS и др.
Спецификация же протокола LDP определяет правила, по которым устанавливается соответствие между входным пакетом и его LSR.
Для распределения меток могут использоваться разные методы:
метод на основе топологии (topology-based method); использует стандартную обработку протоколов маршрутизации (например OSPF и BGP, рассматриваемых ниже);
метод на основе запросов (request-based method); использует обработку управляющего протокола на основе запросов (например, протокола RSVP);
метод на основе трафика (traffic-based method); запускает процедуру присвоения и распределения меток при получении пакета.
Во всех этих случаях архитектурой MPLS предусматривается, что назначение метки, то есть ее привязку к определенному FEC, производит LSR, который является выходным пограничным маршрутизатором для пакетов этого FEC – нижний или нижестоящий LSR, а расположенный "выше по течению" LSR – верхний или вышестоящий LSR (рис. 11.1).
Рис.
11.1. Фрагмент MPLS-сети
Таким образом, назначение меток всегда производится снизу, то есть в сторону, противоположную направлению трафика. Нижний LSR информирует соседние верхние LSR о том, какие метки он привязал к каждому FEC поступающих к нему пакетов. Этот процесс и называется распределением меток, а обеспечивает его протокол распределения меток.
Архитектура MPLS не требует обязательного применения LDP. Для распределения меток могут применяться модификации существующих протоколов маршрутизации, позволяющие использовать их для передачи информации о метках, например рассматриваемый протокол BGP, RSVP, который рассматривается ниже, также имеет расширения, обеспечивающие поддержку обмена метками с уведомлением.
Но все же протокол распределения меток LDP был признан комитетом IETF наиболее удачным и, что еще важнее, хорошо специфицирован им. Кроме того, определено расширение базового протокола LDP для поддержки явной маршрутизации с учетом обеспечения качества обслуживанияя QoS и управления трафиком ТЕ – протокол LDP с учетом ограничивающих условий CR-LDP(Constraint-Based LDP). Ко всему прочему LDP устанавливает надежные транспортные соединения со смежными маршрутизаторами LSR по протоколу TCP, причем в случае, если между двумя LSR надо одновременно установить несколько LDP-сеансов, используется единственное TCP-соединение.
Имеются следующие схемы обмена метками:
LDP преобразует в метки IP-адреса получателя при одноадресной передаче;
RSVP и CR-LDP используются для оптимизации распределения трафика в сети и для резервирования ресурсов;
BGP работает с внешними метками VPN.