
- •Сети связи следующего поколения
- •1. Лекция: Определение ссп, основные характеристики, услуги ссп
- •Особенности современных услуг связи
- •Особенности инфокоммуникационных услуг
- •Требования к сетям связи
- •Понятие сети ссп и ее базовые принципы
- •Классификация услуг для сетей ссп
- •Базовые услуги
- •Дополнительные виды обслуживания (дво)
- •Услуги доступа
- •Информационно-справочные услуги
- •Услуги vpn
- •Услуги мультимедиа
- •2. Лекция: Архитектура ссп
- •3. Лекция: Основные протоколы, используемые в сетях следующего поколения
- •Протоколы rtp, rtcp, udp
- •Протокол н.323
- •Протокол sip
- •Протокол mgcp
- •Протокол megaco/h.248
- •Сравнение протоколов (с позиции применения в ссп)
- •Протокол bicc
- •Транспортировка информации сигнализации(sigtran)
- •Протокол передачи информации управления потоком (sctp)
- •Пользовательский уровень адаптации isdn (iua)
- •Пользовательский уровень адаптации мтр уровня 2 (m2ua – mtp2 –User Adaptation Layer)
- •Пользовательский уровень адаптации м2ра
- •Пользовательский уровень адаптации мтр уровня 3 (m3ua)
- •Пользовательский уровень адаптации sccp (sua)
- •4. Лекция: Оборудование ссп
- •Основные характеристики Softswitch.
- •Поддерживаемые протоколы
- •Поддерживаемые интерфейсы
- •Емкость
- •Производительность
- •Протоколы
- •Поддерживаемые интерфейсы
- •5. Лекция: Программный коммутатор Softswitch
- •Транспортная плоскость
- •Плоскость управления обслуживанием вызова и сигнализации
- •Плоскость услуг и приложений
- •Функциональные объекты
- •6. Лекция: Реализация Softswitch .
- •Взаимодействие Softswitch и окс7
- •Оборудование Softswitch в качестве транзитной станции
- •Оборудование Softswitch в качестве распределенной оконечной станции коммутации
- •Оборудование Softswitch в качестве распределенного ssp
- •Оборудование Softswitch в качестве распределенного узла телематических служб
- •7. Лекция: Качество обслуживания .
- •Характеристики производительности сетевого соединения
- •Полоса пропускания
- •Потеря пакетов
- •Категории и классы качества передачи речи
- •Влияние оконечного оборудования и сети на показатели качества речи
- •Функции качества обслуживания Классификация и маркировка пакетов
- •Управление интенсивностью трафика
- •Распределение ресурсов
- •Предотвращение перегрузки и политика отбрасывания пакетов
- •Маршрутизация
- •8. Лекция: Методы обеспечения качества обслуживания Архитектура интегрированных услуг (IntServ)
- •Протокол rsvp
- •Работа протокола rsvp
- •Rsvp-компоненты
- •Стили резервирования
- •Индивидуальное резервирование
- •Общее резервирование
- •Типы услуг
- •Регулируемая нагрузка
- •Гарантированная битовая скорость
- •Масштабируемость протокола rsvp
- •Архитектура дифференцированных услуг DiffServ
- •Формирователи трафика, расположенные на границе сети
- •Cq. Произвольные очереди
- •Wfq. Взвешенные справедливые очереди
- •Wred. Взвешенный алгоритм произвольного раннего обнаружения
- •9. Лекция: Технология mpls
- •Введение в mpls
- •Стек меток
- •Класс эквивалентности пересылки fec
- •Коммутируемый по меткам тракт lsp
- •Принцип работы
- •10. Лекция: Метки и механизмы mpls Метка
- •Дно стека (s)
- •Время жизни (ttl)
- •Экспериментальное поле (CoS)
- •Значение метки
- •Стек меток mpls
- •Инкапсуляция меток
- •Привязка "метка-fec"
- •Режимы операций с метками
- •11. Лекция: Протоколы распределения меток . Протокол ldp Классы эквивалентности пересылки и ldp
- •Основы протокола ldp
- •Протокол cr-ldp
- •Роль rsvp и rsvp-те в mpls
- •Управление трафиком в mpls
- •12. Лекция: Протоколы маршрутизации
- •Метрики ospf
- •Области ospf
- •Принципы работы ospf
- •Протокол is-is
- •Метрики is-is
- •Маршрутизация is-is
- •Использование протокола bgp в mpls
- •Алгоритм Беллмана-Форда
- •Маршрутизаторы bgp
- •Протокол ebgp
- •Протокол ibgp
- •13. Лекция: Инжиниринг трафика. Виртуальные частные сети
- •Основы vpn
- •Функции vpn по защите данных
- •Технологии создания виртуальных частных сетей
- •Vpn на основе туннелирования через ip
- •Применение туннелей для vpn
- •Сравнительный анализ туннелей mpls и обычных туннелей
- •14. Лекция: ims (ip Multimedia Subsystem).
- •Ключевые факторы перехода к ims
- •Стандартизация ims
- •Архитектура ims
- •Транспортный уровень
- •Плоскость управления
- •Уровень приложений
- •Сравнение Softswitch и ims
- •Различия
- •Учебники к курсу
- •Список литературы
Cq. Произвольные очереди
Custom Queuing (CQ) обеспечивает настраиваемые очереди. Предусматривается управление долей полосы пропускания канала для каждой очереди. Поддерживается 17 очередей. Системная 0 очередь зарезервирована для управляющих высокоприоритетных пакетов (маршрутизация и т.п.) и пользователю недоступна.
Очереди обходятся последовательно, начиная с первой. Каждая очередь содержит счетчик байтов, который в начале обхода содержит заданное значение и уменьшается на размер пакета, пропущенного из этой очереди. Если счетчик не 0, то пропускается следующий пакет целиком, а не его фрагмент, равный остатку счетчика.
Wfq. Взвешенные справедливые очереди
Weighted Fair Queuing (WFQ) автоматически разбивает трафик на потоки (flows). По умолчанию их число равно 256, но может быть изменено. Если потоков больше, чем очередей, то в одну очередь помещается несколько потоков. Принадлежность пакета к потоку (классификация) определяется на основе ToS, IP-адреса источника, IP-адреса назначения, порта источника и порта назначения (протокол IP). Каждый поток использует отдельную очередь.
Обработчик WFQ (scheduler) обеспечивает равномерное (fair – справедливое) разделение полосы между существующими потоками. Для этого доступная полоса делится на число потоков, и каждый получает равную часть. Кроме того, каждый поток получает свой вес (weight), с некоторым коэффициентом обратно пропорциональный IP-приоритету (TOS). Вес потока также учитывается обработчиком.
В итоге WFQ автоматически справедливо распределяет доступную пропускную способность, дополнительно учитывая ToS. Потоки с одинаковыми IP-приоритетами ToS получат равные доли полосы пропускания; потоки с большим IP-приоритетом – большую долю полосы. В случае перегрузок ненагруженные высокоприоритетные потоки функционируют без изменений, а низкоприоритетные высоконагруженные – ограничиваются.
Вместе с WFQ работает RSVP . По умолчанию WFQ включается на низкоскоростных интерфейсах.
Wred. Взвешенный алгоритм произвольного раннего обнаружения
Взвешенный алгоритм произвольного раннего обнаружения (Weighted Random Early Detection – WRED) предоставляет различные уровни обслуживания пакетов в зависимости от вероятности их отбрасывания и обеспечивает избирательную установку параметров механизма RED на основании значения поля IP-приоритета. Другими словами, алгоритм WRED предусматривает возможность более интенсивного отбрасывания пакетов, принадлежащих определенным типам трафика, и менее интенсивного отбрасывания всех остальных пакетов.
CBWFQ
Class Based Weighted Fair Queuing (CBWFQ) соответствует механизму обслуживания очередей на основе классов. Весь трафик разбивается на 64 класса на основании следующих параметров: входной интерфейс, лист доступа (access list), протокол, значение DSCP, метка MPLS QoS.
Общая пропускная способность выходного интерфейса распределяется по классам. Выделяемую каждому классу полосу пропускания можно определять как в абсолютном значении (bandwidth в kbit/s) или в процентах (bandwidth percent) относительно установленного значения на интерфейсе.
Пакеты, не попадающие в сконфигурированные классы, попадают в класс по умолчанию, который можно дополнительно настроить и который получает оставшуюся свободной полосу пропускания канала. При переполнении очереди любого класса пакеты данного класса игнорируются.
LLQ
Low Latency Queuing (LLQ) – очередность с низкой задержкой. LLQ можно рассматривать как механизм CBWFQ с приоритетной очередью PQ (LLQ = PQ + CBWFQ).
PQ в LLQ позволяет обеспечить обслуживание чувствительного к задержке трафика. LLQ рекомендуется в случае наличия голосового (VoIP) трафика. Кроме того, он хорошо работает с видеоконференциями.