
- •Сети связи следующего поколения
- •1. Лекция: Определение ссп, основные характеристики, услуги ссп
- •Особенности современных услуг связи
- •Особенности инфокоммуникационных услуг
- •Требования к сетям связи
- •Понятие сети ссп и ее базовые принципы
- •Классификация услуг для сетей ссп
- •Базовые услуги
- •Дополнительные виды обслуживания (дво)
- •Услуги доступа
- •Информационно-справочные услуги
- •Услуги vpn
- •Услуги мультимедиа
- •2. Лекция: Архитектура ссп
- •3. Лекция: Основные протоколы, используемые в сетях следующего поколения
- •Протоколы rtp, rtcp, udp
- •Протокол н.323
- •Протокол sip
- •Протокол mgcp
- •Протокол megaco/h.248
- •Сравнение протоколов (с позиции применения в ссп)
- •Протокол bicc
- •Транспортировка информации сигнализации(sigtran)
- •Протокол передачи информации управления потоком (sctp)
- •Пользовательский уровень адаптации isdn (iua)
- •Пользовательский уровень адаптации мтр уровня 2 (m2ua – mtp2 –User Adaptation Layer)
- •Пользовательский уровень адаптации м2ра
- •Пользовательский уровень адаптации мтр уровня 3 (m3ua)
- •Пользовательский уровень адаптации sccp (sua)
- •4. Лекция: Оборудование ссп
- •Основные характеристики Softswitch.
- •Поддерживаемые протоколы
- •Поддерживаемые интерфейсы
- •Емкость
- •Производительность
- •Протоколы
- •Поддерживаемые интерфейсы
- •5. Лекция: Программный коммутатор Softswitch
- •Транспортная плоскость
- •Плоскость управления обслуживанием вызова и сигнализации
- •Плоскость услуг и приложений
- •Функциональные объекты
- •6. Лекция: Реализация Softswitch .
- •Взаимодействие Softswitch и окс7
- •Оборудование Softswitch в качестве транзитной станции
- •Оборудование Softswitch в качестве распределенной оконечной станции коммутации
- •Оборудование Softswitch в качестве распределенного ssp
- •Оборудование Softswitch в качестве распределенного узла телематических служб
- •7. Лекция: Качество обслуживания .
- •Характеристики производительности сетевого соединения
- •Полоса пропускания
- •Потеря пакетов
- •Категории и классы качества передачи речи
- •Влияние оконечного оборудования и сети на показатели качества речи
- •Функции качества обслуживания Классификация и маркировка пакетов
- •Управление интенсивностью трафика
- •Распределение ресурсов
- •Предотвращение перегрузки и политика отбрасывания пакетов
- •Маршрутизация
- •8. Лекция: Методы обеспечения качества обслуживания Архитектура интегрированных услуг (IntServ)
- •Протокол rsvp
- •Работа протокола rsvp
- •Rsvp-компоненты
- •Стили резервирования
- •Индивидуальное резервирование
- •Общее резервирование
- •Типы услуг
- •Регулируемая нагрузка
- •Гарантированная битовая скорость
- •Масштабируемость протокола rsvp
- •Архитектура дифференцированных услуг DiffServ
- •Формирователи трафика, расположенные на границе сети
- •Cq. Произвольные очереди
- •Wfq. Взвешенные справедливые очереди
- •Wred. Взвешенный алгоритм произвольного раннего обнаружения
- •9. Лекция: Технология mpls
- •Введение в mpls
- •Стек меток
- •Класс эквивалентности пересылки fec
- •Коммутируемый по меткам тракт lsp
- •Принцип работы
- •10. Лекция: Метки и механизмы mpls Метка
- •Дно стека (s)
- •Время жизни (ttl)
- •Экспериментальное поле (CoS)
- •Значение метки
- •Стек меток mpls
- •Инкапсуляция меток
- •Привязка "метка-fec"
- •Режимы операций с метками
- •11. Лекция: Протоколы распределения меток . Протокол ldp Классы эквивалентности пересылки и ldp
- •Основы протокола ldp
- •Протокол cr-ldp
- •Роль rsvp и rsvp-те в mpls
- •Управление трафиком в mpls
- •12. Лекция: Протоколы маршрутизации
- •Метрики ospf
- •Области ospf
- •Принципы работы ospf
- •Протокол is-is
- •Метрики is-is
- •Маршрутизация is-is
- •Использование протокола bgp в mpls
- •Алгоритм Беллмана-Форда
- •Маршрутизаторы bgp
- •Протокол ebgp
- •Протокол ibgp
- •13. Лекция: Инжиниринг трафика. Виртуальные частные сети
- •Основы vpn
- •Функции vpn по защите данных
- •Технологии создания виртуальных частных сетей
- •Vpn на основе туннелирования через ip
- •Применение туннелей для vpn
- •Сравнительный анализ туннелей mpls и обычных туннелей
- •14. Лекция: ims (ip Multimedia Subsystem).
- •Ключевые факторы перехода к ims
- •Стандартизация ims
- •Архитектура ims
- •Транспортный уровень
- •Плоскость управления
- •Уровень приложений
- •Сравнение Softswitch и ims
- •Различия
- •Учебники к курсу
- •Список литературы
6. Лекция: Реализация Softswitch .
Общими задачами ССП, определенными ITU и ETSI, являются разделение функций переноса информации через сеть, а также отделение функций услуг и приложений от собственно связных функций. Таким образом, речь идет о распределенной архитектуре, в которой связь между компонентами осуществляется исключительно через открытые интерфейсы.
Первый пример сетевой конфигурации, предложенный консорциумом IPCC, представлен на рис. 6.1. Элементами изображенной на этом рисунке сети являются Softswitch, сервер приложений AS (Application Server), шлюз между ТфОП и IP-сетью TG (Trunk Gateway), шлюз доступа AG (Access Gateway), шлюз сигнализации SG (Signaling Gateway) и транспортный медиасервер MS (Media Server).
Рис.
6.1. Пример архитектуры ССП
Softswitch в данном примере выполняет функции MGC-F, R-F и A-F, обсуждавшиеся в лекции 5, обрабатывает всю сигнализацию, управляет TG, AG и соответствующим выделением медиаресурсов, а также обеспечивает получение учетной информации. Кроме того, каждый Softswitch взаимодействует с другими Softswitch по протоколам SIP/SIP-T, H.323 или BICC.
Сервер приложений AS реализует логику услуг. Вызов, который требует дополнительную услугу, либо может быть передан от Softswitch к AS для дальнейшего управления этой услугой, либо сам Softswitch может получать информацию от AS, необходимую для выполнения логики услуги. Сервер приложения AS может сам управлять MS или передать управление им Softswitch.
На транспортный шлюз TG поступают потоки пользовательской (речевой) информации со стороны ТфОП, он преобразует эту информацию в пакеты и передает ее по протоколу IP в сеть с маршрутизацией пакетов, причем делает все это под управлением Softswitch.
Шлюз доступа AG служит интерфейсом между IP-сетью и проводной или беспроводной сетью доступа, передает сигнальную информацию к Softswitch, преобразует пользовательскую информацию и передает ее либо к другому порту этой же IP-сети, либо в другую сеть с коммутацией пакетов, либо к TG для последующей передачи в сеть с коммутацией каналов. Функциональным объектом MG-F в составе AG также управляет Softswitch. Сигнальный шлюз SG обеспечивает доставку к сигнальной информации, поступающей со стороны ТфОП, а также перенос сигнальной информации в обратном направлении.
Рис.
6.2. Пример с ISDN и V5
Медиасервер MS может выполнять такие задачи, как, например, передачу записанных объявлений и накопление цифр номера, хотя в большинстве случаев цифры накапливает шлюз AG. Сервером MS может управлять либо Softswitch, либо AS, либо оба этих сетевых элемента. На рис. 6.2 показан пример сети доступа на базе протокола V5 и ISDN.
Шлюз доступа AG обменивается сигнальной информацией V5 или ISDN с сетью доступа и является окончанием физического соединения, по которому переносится сигнальная информация V5 или ISDN. Затем он передает эту информацию по IP-сети к Softswitch с помощью протоколов сигнализации SIGTRAN (V5UA или IUA). Речевую информацию AG преобразует в пакетную форму и пересылает ее в виде пакетов устройству, преобразующему пакетированную речь обратно в TDM-форму и затем передающему ее в сеть ТфОП.
На рис. 6.3 показан пример реализации VoIP-сети, использующей сеть доступа с технологий DSL. Обычные аналоговые телефоны и любые устройства локальной сети Ethernet подключаются к устройству интегрированного доступа IAD абонента, которое обрабатывает и передает абонентскую сигнальную информацию по IP-сети или через мультиплексор доступа DSLAM к Softswitch. Что касается речевой информации, то IAD оцифровывает ее, пакетирует и переносит в виде пакетов RPT по IP-сети.
Эти три примера иллюстрируют базовое свойство сетей ССП – интеграцию передачи речи, данных и видеоинформации, включая объединение оборудования и функциональных возможностей как на уровне опорной сети (Core Network), так и на уровне сети доступа (Access Network).
Рис.
6.3. Архитектура ССП с IAD и DSLAM