
- •Конспект лекций по теории вероятностей и математической статистике
- •Лекция 1 §1 Предмет теории вероятностей. Случайные события
- •§ 2 Алгебра событий
- •§3 Классическое определение вероятности. Свойства вероятности
- •Свойства вероятности
- •Лекция 2 §4 Основные формулы комбинаторики
- •4.1. Размещения без повторений
- •4.2. Перестановки без повторений
- •4.3. Сочетания без повторений
- •4.4. Перестановки с повторениями
- •4.5. Размещения с повторениями
- •4.6. Сочетания с повторениями
- •§5 Теорема сложения вероятностей
- •Лекция 3 §6 Теорема умножения вероятностей
- •§7 Формула полной вероятности
- •§8 Формула Байеса (теорема гипотез)
- •§9 Схема повторения испытаний. Формула Бернулли
- •Лекция 4 §10 Формула Пуассона или формула редких явлений
- •§11 Локальная и интегральная формулы Лапласа
- •§12 Дискретная случайная величина и закон ее распределения
- •Дискретные случайные величины
- •Лекция 5
- •§13 Функция распределения
- •§14 Функция распределения и плотность вероятности непрерывной случайной величины, их взаимосвязь и свойства
- •Лекция 6
- •§15 Равномерный закон распределения вероятностей (равномерное распределение на отрезке)
- •§16 Нормальный закон распределения вероятностей (или нормальное распределение на прямой)
- •§17 Показательный закон распределения вероятностей
- •Лекция 7
- •§18 Основные числовые характеристики случайных величин
- •§19 Математическое ожидание дискретной случайной величины
- •§20 Математическое ожидание случайной величины, имеющей плотность вероятности
- •§21 Свойства математического ожидания
- •§22 Дисперсия дискретной случайной величины
- •Свойства дисперсии
- •Лекция 8
- •§23 Дисперсия случайной величины, имеющая плотность вероятности
- •Дополнительные числовые характеристики случайной величины:
- •§24 Выборочное среднее (среднее арифметическое)
- •§25 Задачи математической статистики. Генеральная и выборочная совокупности. Вариационный ряд и его основные числовые характеристики
- •Задачи мс
- •Лекция 9
- •§26 Интервальные таблицы частот
- •§27 Эмпирическая функция распределения
- •§28 Выборочные характеристики случайной величины
- •Лекция 10 (Домашняя)
- •§29 Проверка статистических гипотез
- •§30 Проверка гипотез о среднем значении нормально распределенной св при известной и неизвестной дисперсии
- •§31 Сравнение двух дисперсий нормальных генеральных совокупностей
- •§32 Сравнение двух средних генеральных совокупностей, дисперсии которых известны (неизвестны)
§12 Дискретная случайная величина и закон ее распределения
Наряду с понятием случайного события в теории вероятности используется и более удобное понятие случайной величины.
Определение. Случайной величиной называется величина, принимающая в результате опыта одно из своих возможных значений, причем заранее неизвестно, какое именно.
Будем обозначать случайные величины заглавными буквами латинского алфавита (Х, Y, Z,…), а их возможные значения – соответствующими малыми буквами (xi, yi,…).
Примеры: число очков, выпавших при броске игральной кости; число появлений герба при 10 бросках монеты; число выстрелов до первого попадания в цель; расстояние от центра мишени до пробоины при попадании.
Можно заметить, что множество возможных значений для перечисленных случайных величин имеет разный вид: для первых двух величин оно конечно (соответственно 6 и 11 значений), для третьей величины множество значений бесконечно и представляет собой множество натуральных чисел, а для четвертой – все точки отрезка, длина которого равна радиусу мишени. Таким образом, для первых трех величин получаем множество значений из отдельных (дискретных), изолированных друг от друга значений, а для четвертой оно представляет собой непрерывную область. По этому показателю случайные величины подразделяются на две группы: дискретные и непрерывные.
Определение. Случайная величина называется дискретной, если она принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.
Определение. Случайная величина называется непрерывной, если множество ее возможных значений целиком заполняет некоторый конечный или бесконечный промежуток. Число возможных значений непрерывной случайной величины бесконечно.
Дискретные случайные величины
Для задания дискретной случайной величины нужно знать ее возможные значения и вероятности, с которыми принимаются эти значения. Соответствие между ними называется законом распределения случайной величины. Он может иметь вид таблицы, формулы или графика.
Таблица, в которой перечислены возможные значения дискретной случайной величины и соответствующие им вероятности, называется рядом распределения:
xi |
x1 |
x2 |
… |
xn |
… |
возможные значения |
pi |
p1 |
p2 |
… |
pn |
… |
вероятность возможных значений |
Заметим, что
событие, заключающееся в том, что
случайная величина примет одно из своих
возможных значений, является достоверным,
поэтому
или
Задача. Монету бросают 5 раз. Случайная величина X – количество выпадения герба. Составить ряд распределения случайной величины Х.
Решение.
Очевидно, что Х
может принимать 5 значений: 0, 1, 2, 3, 4, 5,
то есть
X
= 0, 1, 2, 3, 4, 5. По условию
,
.
Вычислим вероятность каждого значения
по формуле Бернулли:
.
Герб не выпадет
ни разу (k
= 0):
.
Или
.
Герб выпадет
один раз (k
= 1):
.
Герб выпадет два раза (k = 2):
.
Герб выпадет три раза (k = 3):
.
Герб выпадет четыре раза (k = 4):
.
Герб выпадет пять раз (k = 5):
.
Следовательно, ряд распределения имеет вид:
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
|
|
биномиальные вероятности |
При этом сумма вероятностей равна единице:
Графически закон распределения дискретной случайной величины можно представить в виде многоугольника распределения – ломаной, соединяющей точки плоскости с координатами (xi, pi). То есть по оси абсцисс откладываются возможные значения случайной величины, а по оси ординат – вероятности этих значений. Для наглядности полученные точки соединяются отрезками прямых. Многоугольник распределения, так же как и ряд распределения, полностью характеризует случайную величину и является одной из форм закона распределения.