
- •Л.А. Черновский, о.М. Бонина, е.А. Удальцов основы общей экологии и защита биосферы Содержание
- •Введение
- •Экология как наука
- •Возникновение глобальных проблем окружающей среды
- •Уровни биологической организации и трофические связи живого
- •Взаимоотношения организма и среды
- •Биосфера: свойства, структура
- •Круговорот веществ в природе
- •Круговорот кислорода
- •Круговорот углерода
- •Круговорот азота
- •Круговорот фосфора
- •Круговорот воды
- •Функционирование биосферы
- •Демографические проблемы Земли
- •Природные ресурсы
- •Влияние деятельности человека на атмосферу
- •Влияние деятельности человека на гидросферу
- •Экология и здоровье человека
- •Природных ресурсов и охраны природы
- •Основы экономики природопользования
- •Основы экологического права и профессиональной ответственности
- •Экологический мониторинг
- •Экологические стандарты и нормативы
- •Экозащитная техника и технологии
- •Международное сотрудничество в области охраны опс
- •Выживание человечества?
- •Приложение2
- •Наличие подвижного состава автомобильного транспорта1)
- •Улавливание и утилизация загрязняющих атмосферу веществ, отходящих от стационарных источников в 2005г.
- •Структура инвестиций в основной капитал, направленных на охрану окружающей среды и рациональное использование природных ресурсов, по источникам финансирования в рф 2005 г. (в процентах)
- •Методологические пояснения
- •Рекомендуемая литература
Круговорот азота
Азот - один из главных биогенных элементов. Основным резервуаром газообразного азота служит атмосфера (78% объема воздуха).
Однако в отличие от углекислого газа круговорот азота связан с рядом особенностей. Во-первых, усваивать азот из воздуха могут только отдельные виды так называемых азотфиксирующих организмов - некоторые сине-зеленые водоросли и симбиотические бактерии бобовых растений. Во-вторых, являясь химически весьма инертным, азот не принимает непосредственного участия, как углерод, в высвобождении энергии при дыхании, он только входит в состав белков и нуклеиновых кислот. В-третьих, разложение азотсодержащих веществ с выделением газообразного азота осуществляется, как правило, в несколько стадий с помощью целого ряда специализированных микроорганизмов. В связи с этим большая часть биохимических превращений происходит в почве, где доступность азота растениям облегчается растворимостью его неорганических соединений.
Содержание азота в тканях живых организмов около 3%. В окружающую среду органический азот попадает в виде аминогруппы NH2 или мочевины CO(NH2)2. Процессы аммонификации и нитрификации происходят при участии специализированных бактерий. При недостатке кислорода в почве бактерии могут использовать кислород нитратов и нитритов. В процессе денитрификации азот переводиться в газообразное состояние и частично фиксируется клубеньковыми растениями, а остальная часть удаляется из активных фондов почвы и попадает в виде свободного азота в атмосферу.
В естественных условиях процессы связывания и освобождения азота уравновешивают друг друга. Искусственное внесение азота с удобрениями достигло 30 млн. т. в год и сравнялось с естественным потоком азота в биосфере, что привело к избытку азота в некоторых почвах и водоемах. Однако глобального нарушения круговорота азота пока не произошло.
Круговорот фосфора
К круговоротам основных химических элементов, имеющих газовую фазу, примыкают так называемые осадочные круговороты. Минеральный фосфор - редкий элемент в биосфере, его содержание в земной коре не превышает 1%.
Основным источником фосфора служат изверженные и осадочные породы.
Неорганический фосфор из пород земной коры вовлекается в циркуляцию при их выщелачивании и растворении в континентальных водах. На суше неорганический фосфор поглощается растениями и переводится в состав живого вещества растений и потребляющих растения животных. Затем органические фосфаты вместе с трупами, отходами и экскрементами животных возвращаются в землю, подвергаются переработке микроорганизмами и снова включаются в круговорот.
Фосфор доступен растениям только в узком диапазоне кислотности - в слабокислой среде, при другой кислотности он переходит в нерастворимые соединения, и становиться недоступным для них.
С текучими водами фосфор поступает в водоемы в виде фосфатов. Если на суше его круговорот происходит в сравнительно благоприятных условиях, то в водоемах дело обстоит сложнее. Отмершие организмы накапливаются в донных отложениях. Разложение органики вблизи дна замедлено вследствие недостаточного притока кислорода. Минерализованный фосфор образует нерастворимые соединения с трехвалентным железом, кальцием и прочно удерживается в осадке. Происходит обеднение фосфором верхних слоев воды. Это обстоятельство ограничивает развитие водной растительности.
Во многих водоемах возврат фосфора из донных отложений происходит в основном только при сезонном перемещении вод. В мелких водоемах важную роль в поддержании круговорота фосфора играет его анаэробный возврат - в этом случае в водоеме создаются восстановительные условия. При этом железо переходит в растворимую двухвалентную форму с одновременным высвобождением растворимых фосфатов. Фосфаты возвращаются в верхние слои воды с пузырьками метана, сероводорода и при перемешивании вод. Анаэробный возврат фосфора в жаркое время нередко бывает причиной массового «цветения» водоемов.
Ежегодный вынос фосфора в водные объекты оценивается в 1,4×107 т. Скорость его обратного переноса на сушу птицами и продуктами рыбного промысла значительно меньше - около 105 т/год. Искусственное внесение удобрений в наземные агроценозы оценивается в 7×107 т/год, причем заметная доля их смывается с полей в водоемы.
Таким образом, механизмы естественного возврата фосфора на сушу не способны сегодня компенсировать потери этого элемента. Поскольку на Земле запасы фосфора малы и круговорот его недостаточно совершенен, любые воздействия человека на его биогеохимический круговорот могут привести к серьезным последствиям.
Круговороты других биогенных элементов изучены в меньшей степени, чем круговорот фосфора, но все они происходят по похожей схеме с рядом своих особенностей. При этом следует отметить, что перемещение минеральных солей - это очень важный фактор. Человек, расширяя сельскохозяйственную деятельность, забирает вместе с продукцией и входящие в ее состав минеральные элементы. Поэтому необходимо знать, сколько минеральных солей извлекается из почвы, чтобы вернуть ей идентичное количество. Ранее этот процесс обеспечивался естественным круговоротом минеральных солей, но теперь в зонах деятельности человека этот процесс необходимо регулировать.