9Вопрос
Рис. 1 Колодцевая кладка:
А - фрагмент кладки; Б - порядковая раскладка кирпичей при кладке прямого угла стены; 1 - утеплитель; 2 - диафрагма из тычковых кирпичей
Этот строительный прием позволяет снизить расход кирпича на 15-20% по сравнению со сплошной кирпичной кладкой. Варианты колодцевой кладки характеризуются различной капитальностью и устойчивостью (рис. 2).
Рис. 2 Варианты колодцевой кладки - вид сверху (в мм):
А - колодцевая кладка в два кирпича; Б - колодцевая кладка в 2,5 кирпича: В - модифицированная колодцевая кладка; 1 - кирпичная кладка; 2 - теплоизоляция; 3 - пенобетон
Слои в колодцевой кладке соединяют вертикальными диафрагмами, расстояние между которыми не должно превышать 1170 мм. На рис. 3 дан план кладки с примыканием внутренней стены.
Колодцы по ходу кладки заполняют шлаком, керамзитом или легким бетоном. Такое решение хорошо защищает утеплитель от внешних воздействий, хотя и несколько ослабляет конструктивную прочность стены.
10 Вопрос
Перекрытия — горизонтальные ограждающие конструкции, разделяющие по высоте объем здания на этажи; одновременно они являются и несущими, так как воспринимают вертикальные нагрузки от людей, оборудования и материалов, находящихся на этаже, и горизонтальные ветровые нагрузки, передающиеся от стен зданий, т. е. перекрытия выполняют роль диафрагм жесткости в горизонтальном направлении, обеспечивающих устойчивость зданий.
По расположению в здании перекрытия разделяют на междуэтажные, чердачные и перекрытия над подвалами.
По роду материалов основных несущих элементов перекрытия могут быть железобетонными (сборными, монолитными), деревянными и комбинированными, в которых несущие балки (ригели) выполнены из стали, а плиты перекрытий железобетонные.
По конструктивным схемам перекрытия делятся на балочные, ребристые и панельные (безбалочные).
Основными элементами перекрытий являются: несущие конструкции (балки, ригели и плиты); щиты настилов; звуко-, тепло- и гидроизоляционные прослойки; конструктивные элементы иолов зданий.
В зависимости от назначения зданий и перекрытий к ним предъявляются кроме обязательных требований к прочности, жесткости, индустриальности, минимальной высоте (толщине) и экономичности еще и дополнительные требования по тепло- и звукоизоляции, огнестойкости, газо-, паро- и водонепроницаемости.
В качестве теплоизоляции перекрытий, разделяющих помещения с различным температурно-влажностным режимом, используют пористые сыпучие (пемзу, керамзитовый гравий, шлак) или плитные теплоизоляционные материалы (минераловатные плиты и др.).
Для повышения звукоизоляции перекрытий по плитам укладывают слой пористых или волокнистых материалов, а также прокаленный песок, газобетон, перлитоботон и др.
Для повышения огнестойкости деревянных конструкций перекрытий их поверхности покрывают специальными огнестойкими составами. Чтобы через перекрытия не проникали газы, пары и влага, устраивают оклеечную изоляцию из рулонных материалов на битумных мастиках или поверхности перекрытий покрывают слоем специальных изоляционных мастик.
В перекрытиях чердачных и над неотапливаемыми подвалами создают слой пароизоляции из рулонных материалов (пергамин, толь) и теплоизоляции из засыпных или плитных утеплителей.
В перекрытиях душевых и санузлов перед устройством пола выполняют гидроизоляцию из рулонных материалов на битумных мастиках. Слой гидроизоляции поднимается на стены на высоту 100 мм. Качество гидроизоляции проверяют слоем воды, заливаемой на поверхность перекрытия.
Железобетонные конструкции
9 вопрос
Металлические конструкции
9 вопрос
10 вопрос
буду искать
Конструкции из дерева и пластмасс
9 вопрос
Конструкционные пластмассы в строительстве применяют в составе элементов несущих и ограждающих строительных конструкций. Основой этих материалов являются синтетические полимерные смолы — продукты промышленности химических органических материалов.
Стеклопластики.
Стеклопластики представляют собой материалы, состоящие из стекловолокнистого наполнителя и связующего.
В качестве связующего обычно используются термореактивные смолы (полиэфирная, эпоксидная, фенолоформальдегидная). Стеклянное волокно является армирующим элементом, прочность которого достигает 1000-2000 МПа. Основой стекловолокон являются элементарные волокна.
Элементарные волокна (первичные нити) получают из расплавленной стеклянной массы, вытягивая ее через небольшие отверстия- фильеры; элементарные волокна (порядка 200) диаметром 6-20 мкм объединяют в нити, а несколько десятков нитей- в жгуты (крученые нити).
В стеклопластиках, применяемых в строительстве, используют следующие стекловолокнистые наполнители:
а) прямолинейные непрерывные волокна, вводимые в виде жгутов, нитей или элементарных волокон.
Схема получения непрерывного стекловолокна.
б) рубленое стекловолокно в виде хаотически расположенных отрезков длиной приблизительно 50 мм.
Механические свойства стеклопластиков зависят от вида стекловолокнистого наполнителя. Наиболее высокими механическими свойствами обладают стеклопластики, армированные непрерывным прямолинейным стекловолокном. В направлении волокон их прочность достигает 1000 МПа при растяжении, а модуль упругости до 40000 МПа, однако, в поперечном направлении прочность стеклопластиков не велика (примерно в 10 раз меньше).
Все стеклопластики, армированные в одном или в двух взаимноперпендикулярных направлениях, являются материалами анизотропными.
Стеклопластики, армированные рубленым стекловолокном, являются изотропными материалами.
Существуют следующие виды стеклопластиков:
1) Пресс - материалы типа СВАМ (стекловолокнистый анизотропный пресс- материал) является одним из первых высокопрочных стеклопластиков, полученных путем прессования стеклошпонов (шпонов из однонаправленного стекловолокна).
Получают его таким образом: после намотки определенного числа слоев пропитанной нити однонаправленный материал срезают. В развертке он представляет собой квадратный лист размером 3х3 м2. Затем поворачивают лист на 90 градусов и вновь наматывают слой нитей. Таким образом, получается стеклошпон с взаимно-перпендикулярным расположением волокон. Предел прочности СВАМ при растяжении и сжатии составляет 400-500 МПа, а при изгибе, приблизительно, 700 МПа.
2) Пресс - материалы АГ-4С и АГ-4В.
АГ-4С представляет собой однонаправленную ленту, полученную на основе крученых стеклянных нитей и аминофинолоформальдегидной смолы. АГ-4С предназначается для получения высокопрочных изделий методом прямого прессования или намотки.
Пределы прочности при сжатии и изгибе ниже , чем у СВАМ – 200-250 МПа, а при растяжении несколько выше.
Пресс – материал типа АГ-4В представляет собой стекловолокнит на основе срезов первичной нити. Специально подготовленный стекловолокнистый наполнитель смешивают с фенолоформальдегидной смолой, затем сушат.
Стеклопластики типа СВАМ, АГ-4С и АГ-4В используют для изготовления соединительных деталей (болтов, фасонок) и для профильных изделий, эксплуатируемых в химически агрессивных средах, где металл быстро корродирует. Все перечисленные стеклопластики являются светонепроницаемыми. Однако, в строительстве чаще всего применяют светопрозрачные стеклопластики. У нас в стране в больших объемах выпускается светопроницаемый полиэфирный листовой стеклопластик.
3) Полиэфирный стеклопластик изготавливают на основе рубленого стекловолокна и прозрачных полиэфирных смол, благодаря которым полиэфирный стеклопластик является светопроницаемым. Выпускается он в изделиях в виде волнистых или плоских листов, часто имеющих различные окраски. Прочностные характеристики существенно ниже, чем у предыдущих материалов, и составляют 60-90 МПа при растяжении и сжатии.
Полиэфирные стеклопластики получили широкое применение в ограждающих конструкциях (стеновые и кровельные панели), лестничных ограждениях и балконных ограждениях, навесах т.п. конструкциях. Весьма перспективны стеклопластики для совмещенных пространственных конструкций.
Древесные пластики.
Материалы, полученные на основе переработки натуральной древесины, соединенные синтетическими смолами называют древесными пластиками.
Древеснослоистые пластики (ДСП) изготавливают из тонких листов березового (иногда ольхового, липового или букового) шпона, пропитанного смолой и запрессованного при высоком давлении 150-180 кг\см2 и температуре t=145-155ºC.
В зависимости от взаимного расположения слоев шпона в пакете, различают 4 основных марки ДСП:
ДСП-А – все слои параллельны друг другу, ДСП-Б – через каждые 10-12 параллельных слоев один поперечный, ДСП-В – перекрестное расположение, причем наружные слои располагаются вдоль плиты, ДСП-Г – звездообразная, каждый слой смещен по отношению к предыдущему на 25-30º.
Для строительных конструкций рекомендуется ДСП-Б и ДСП-В, как наиболее прочные поперек волокон и под углами к волокнам.
Во всех случаях прочность ДСП превышает прочность цельной древесины, а для некоторых марок при действии усилий вдоль волокон шпона не уступает прочности стали.
В настоящее время в связи еще с высокой стоимостью ДСП, он применяется в основном для изготовления средств соединения элементов конструкций.
Древесноволокнистые плиты (ДВП) изготавливают из хаотически расположенных волокон древесины (опилок), склеенных канифольной эмульсией. Сырьем для ДВП являются отходы лесопиления и деревообработки. Для изготовления твердых и сверхтвердых плит в древесноволокнистую массу добавляют фенолоформальдегидную смолу. При длительном действии влажной среды, древесноволокнистая плита весьма гигроскопична, набухает по толщине и теряет прочность, поэтому во влажных условиях применять ДВП не рекомендуется. Прочность сверхтвердых плит ДВП плотностью не менее 950 кг\м3 при растяжении составляет около 25 МПа.
Древесностружечные плиты (ПС и ПТ) получают путем горячего прессования древесных стружек, перемешанных, вернее опыленных фенолоформальдегидными смолами.
Древесностружечные плиты в зависимости от плотности подразделяют на:
- легкие γ=350-500 кг\м3
- средние ПС γ=500-650 кг\м3
- тяжелые ПТ γ=650-800 кг\м3
Прочность плит ПТ и ПС при растяжении составляет соответственно 3,6-2,9 МПа и 2,9-2,1 МПа. ПС и ПТ являются дешевым и доступным материалом, он широко используется в строительстве в качестве перегородок, подвесных потолков. Влагопоглощение плит колеблется в широких пределах, при этом они разбухают по толщине на 30-40%.
Термопласты
К термопластичным материалам или термопластам (thermoplast, thermoplastic) относятся полимеры, которые при нагревании в процессе переработки переходят из твердого агрегатного состояния в жидкое: высокоэластическое или вязкотекучее (литьевые термопласты переходят в вязкотекучее состояние). При охлаждении материала происходит обратный переход в твердое состояние.
Классификация термопластов по эксплуатационным свойствам
Литьевые термопластичные материалы делят на несколько групп в зависимости от уровня эксплуатационных свойств. К таким свойствам прежде всего относится температура долговременной эксплуатации.
Пластмассы достаточно условно делят на группы (в различных изданиях приводятся разные критерии классификации):
- Материалы общего назначения или общетехнического назначения;
- Конструкционные пластмассы или пластмассы инженерно-технического назначения
- Суперконструкционные или высокотермостойкие полимеры.
Среди термопластов выделяют особую группу термопластичных эластомеров или термоэластопластов, которые по технологическим свойствам являются обычными термопластами, а по эксплуатационным подобны каучукам и резинам, т.е. способны к большим обратимым деформациям. В зависимости от температуры долговременной эксплуатации термоэластопласты также подразделяют на материалы общего назначения и инженерно-технического назначения.
Классификация термопластов по типу наполнителя
Наполнители могут значительно изменять эксплуатационные и технологические свойства термопластов.
Термопласты, содержащие стекловолокно и др. виды стеклянных наполнителей, традиционно называют стеклопластиками. В последние годы большое распространение получили материалы, наполненные длинным стекловолокном, требующие особых условий переработки.
Углепластиками называют материалы, содержащие углеродное волокно.
Иногда выделяют группу "специальных" термопластов. К ним относят материалы, содержащие антипирены (материалы с повышенной стойкостью к горению), электропроводящие добавки (антистатические, электропроводящие, ЭМИ-экранирующие материалы), антифрикционные добавки (материалы с пониженным коэффициентом трения), добавки, придающие износостойкость и др.
Механика грунтов
9 и 10 вопрос
Метод послойного суммирования
Расчет осадки слоистых оснований выполняется методом послойного суммирования, в основу которого положена выше разобранная задача (основная задача). Сущность метода заключается в определении осадок элементарных слоев основания в пределах сжимаемой толщи от дополнительных вертикальных напряжений σZP, возникающих от нагрузок, передаваемых сооружениям.
Так как в основу этого метода положена расчетная модель основания в виде линейно-деформируемой сплошной среды, то необходимо ограничить среднее давление на основание таким пределом, при котором области возникающих пластических деформаций лишь незначительно нарушают линейную деформируемость основания, т.е. требуется удовлетворить условие
(7.11)
Для определения глубины сжимаемой толщи Нс вычисляют напряжения от собственного веса σZq и дополнительные от внешней нагрузки σZP.
Нижняя граница сжимаемой толщи ВС основания принимается на глубине z = Нс от подошвы фундамента, где выполняется условие
(7.12)
т.е. дополнительные напряжения составляют 20% от собственного веса грунта.
При наличии нижеуказанной глубины грунтов с модулем деформации Е≤5 МПа должно соблюдаться условие
(7.13)
Для оснований гидротехнических сооружений по СНиП 2.02.02—85 «Основания гидротехнических сооружений» нижняя граница активной зоны находится из условия
(7.14)
Расчет осадки удобно вести с использованием графических построений в следующей последовательности (рис. 7.11):
строят геологический разрез строительной площадки на месте рассчитываемого фундамента;
наносятся размеры фундамента;
строятся эпюры напряжений от собственного веса грунта σZg и дополнительного σZP от внешней нагрузки;
определяется сжимаемая толща Нс;
разбивается Нс на слои толщиной hi≤0,4b;
определяется осадка элементарного слоя грунта по формуле
(7.15)
Тогда полную осадку можно найти простым суммированием осадок всех элементарных слоев в пределах сжимаемой толщи из выражения
(7.16)
где β— безразмерный коэффициент, зависящий от коэффициента относительных поперечных деформаций, принимаемый равным 0,8; hi — высота i-го слоя; Ei — модуль деформации i-го слоя грунта;
— среднее напряжение i-го элементарного
слоя.
Метод послойного суммирования позволяет определять осадку не только ценфальной точки подошвы фундамента. С его помощью можно вычислить осадку любой точки в пределах или вне пределов фундамента. Для этого пользуются методом угловых точек и строится эпюра напряжений вертикальной, проходящей через точку, для которой требуется расчет осадки.
Рис. 7.11. Расчетная схема для определения осадки методом послойного суммирования: DL — отметка планировки; NL — отметка поверхности природного рельефа; FL — отметка подошвы фундамента; ВС — нижняя граница сжимаемой толщи; Нс — сжимаемая толща
Таким образом, метод послойного суммирования в основном используется при расчете небольших по размерам фундаментов зданий и сооружений и при отсутствии в основании пластов очень плотных малосжимаемых грунтов.
Основные допущения следующие:
1. Осадка происходит только при давлениях, превышающих природное давление на отметке заложения подошвы фундамента.
2. Связь между давлением и относительной деформацией линейная и может быть описана зависимостью закона Гука.
3. Напряжения в грунтовом массиве распределяются в соответствии с решениями теории упругости.
4. Рассчитывается эпюра давлений s z по глубине только по оси симметрии нагрузки (x = 0), и эти напряжения считаются одинаковыми вдоль горизонтальной оси x. Таким образом, имеет место некоторое завышение напряжений, действующих вдоль оси x, против средних значений в пределах ширины подошвы фундамента.
5. Считается, что грунт не претерпевает бокового расширения и сжимается только в вертикальном направлении (за счет этого осадка несколько преуменьшается). Схема показана на рис.М.9.5.
Рис.М.9.5. Схема для расчета осадок по способу элементарного суммирования:
1 - элементарный слой до деформации; 2 - то же, после деформации
Эпюра природного давления отсчитывается от отметки поверхности грунта - от природного рельефа.
В каких пределах ведется суммирование осадки при расчете методом послойного суммирования?
Всегда ли принимается при определении положения нижней границы сжимаемой толщи коэффициент 0,2?
В методе послойного суммирования осадки суммируются до той отметки, когда осевые дополнительные по отношению к природным напряжения не снизятся до 20 % от природных (бытовых) на этой же отметке. Эта отметка считается нижней границей сжимаемой толщи (В.С.), а осадками за счет сжатия нижерасположенной толщи пренебрегают. Однако, если ниже расположены слабые грунты с модулем деформации E < 5 МПа, то нижнюю границу сжимаемой толщи следует опустить до той отметки, где дополнительные по отношению к природным давления составят 10 % от природных, а не 20 % как обычно.
От каких факторов зависит положение нижней границы сжимаемой толщи в методе послойного суммирования (будет ли она располагаться ниже или выше)?
Зависит от:
- удельного веса грунтов основания;
- наличия горизонта грунтовых вод;
- заглубления фундамента;
- нагрузки на фундамент;
- ширины фундамента;
- соотношения сторон подошвы фундамента в плане;
- наличия слоя слабого грунта в основании.
Основания и фундаменты
