Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика. Молекулярная физика переделано 3.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.99 Mб
Скачать

Постановка задачи

Для изучения явления теплопроводности рассмотрим систему, состоящую из двух цилиндров с радиусами r1 и r2 (рис.2-8.2,а). Температуры цилиндров соответственно равны Т1 и Т2 иподдерживаются с помощью внешнего источника тепла постоянными. Внутренний цилиндр может быть, в частности, просто проволокой, по которой пропускается электрический ток, и она служит нагревателем, т.е. Т12 (рис. 2-8.2,б). Поток тепла направлен от более нагретой внутренней поверхности к внешней. В случае стационарного потока распределение температур между цилиндрами будет постоянно во времени.

Используя соотношение (2-8.1), получим, что поток тепла Q в единицу времени через цилиндрическую поверхность высотой и радиусом rвыражается формулой

. (2-8.1)

Интегрируя это выражение при значениях температур внутреннего и внешнего цилиндров Т1 и Т2 , получим

. (2-8.2)

В стационарном состоянии поток тепла Q можно принять равным мощности нагревателя W, и тогда коэффициент теплопроводности имеет вид

(2-8.3)

На практике все температуры мы определяем по шкале Цельсия, которая с абсолютной температурой связана соотношением t=(T-273)0C. Следовательно, разность температур Т1 2 в выражении (2-8.3) может быть подставлена в (2-8.3) в градусах Цельсия t1-t2 (как она и определяется в эксперименте).

Таким образом, для определения величины коэффициента теплопроводности надо определить: количество тепла, переносимого от внутренней поверхности к внешней, разность температур между внутренним и внешним цилиндром, размеры системы. Все эти величины находятся из эксперимента.

Следует иметь в виду, что полученные значения будут несколько завышены, так как в процессе теплопроводности определенную роль могут играть процессы излучения и конвекции. Влияние конвекции на полученные экспериментальные результаты можно оценить, определяя коэффициент теплопроводности при разных давлениях воздуха. Известно, что с увеличением давления интенсивность конвекционного переноса тепла растет. Если в результате эксперимента обнаружится тенденция роста коэффициента теплопроводности с увеличением давления, то ее можно объяснить наличием конвективных потоков. Роль теплового излучения может быть оценена с помощью закона Стефана – Больцмана, по которому с единицы поверхности абсолютно черного тела излучается энергия W= , гдеТ – абсолютная температура тела, а . Полная энергия, передаваемая при излучении от одного цилиндра к другому, не превышает

,

(2-8.4)

где S – площадь поверхности внутреннего цилиндра.

Описание установки

Для измерения коэффициента теплопроводности воздуха в данной работе используется лабораторная установка ФПТ 1-3. Установка представляет собой конструкцию настольного типа, состоящую из основных частей: 1) приборный блок, 2) рабочий элемент.

Приборный блок представляет собой единый конструктив со съемной крышкой, съемными лицевыми панелями. Внутри блока размещена печатная плата с радиоэлементами, органы подключения, регулирования, трансформаторы.

Лицевая панель блока условно разделена на три функциональных узла:

  1. «НАПРЯЖЕНИЕ»осуществляет управление работой цифрового контролера для измерения напряжения.

  2. «НАГРЕВ»осуществляет включение и регулирование нагрева нити.

  3. «СЕТЬ» осуществляет подключение установки к сети питающего напряжения.

Рабочий элемент представляет собой коробчатый конструктив, укрепленный на стойке. Несущими узлами этого блока являются панель и кронштейн, скрепленные между собой винтами.

Между выступающими частями панели в текстолитовых фланцах зажата стеклянная трубка. По оси трубки натянута вольфрамовая нить. Между панелью и кронштейном размещен вентилятор для охлаждения трубки. На панели установлены цифровой контроллер для измерения температуры и цифровой контроллер для измерения напряжения.

В лабораторной установке тепловой поток создается путем нагрева нити постоянным током и определяется по формуле

, (2-8.5)

где  падение напряжения на нити;

 падение напряжения на эталонном резисторе;

 сопротивление эталонного резистора ( ).

Разность температур нити и трубки: , где – температура нити,  температура трубки, равна температуре окружающего воздуха.

Температура трубки в процессе эксперимента принимается постоянной, т.к. ее поверхность обдувается с помощью вентилятора потоком воздуха.

Температура нити тем выше, чем больше протекающий по ней ток. С помощью температуры меняется сопротивление нити, измеряемое методом сравнения падения напряжений на нити и на эталонном резисторе.

Разность температур нити и трубки определяется по формуле

, (2-8.6)

где  падение напряжения на нити в нагретом состоянии;

 падение напряжения на нити при температуре окружающего воздуха (при рабочем токе не более 10мА);

 падение напряжения на эталонном резисторе при нагреве нити;

 падение напряжения на эталонном резисторе при температуре окружающего воздуха;

 температурный коэффициент сопротивления ;

t – температура воздуха.