
- •Классификация вод и свойства водных дисперсных систем
- •Классификация промышленных отходов
- •Очистка воздуха от аэрозольных примесей
- •Абсорбция газовых примесей
- •Адсорбция газовых примесей
- •Теория процесса катализа
- •Высокотемпературное обезвреживание газовых выбросов
- •Конденсация газообразных примесей
- •Диффузионные процессы в атмосфере
- •Распространение загрязнений в атмосфере.
- •Разбавление примесей в гидросфере
- •Разбавление сточных вод при спуске в водоемы
- •Центробежное осаждение примесей из сточных вод
- •Физико-химические методы очистки сточных вод
- •Коагуляция и флокуляция загрязнений сточных вод
- •Флотационная очистка сточных вод
- •Очистка сточных вод адсорбцией.
- •Ионный обмен в растворах сточных вод
- •Очистка сточных вод экстракцией загрязнений
- •Обратный осмос и ультрафильтрация в растворах сточных вод
- •Десорбция, дезодорация и дегазация растворенных примесей
- •Электрохимические методы очистки сточных вод
- •Окисление загрязнителей сточных вод
- •Очистка сточных вод восстановлением
- •Термические методы кондиционирования осадков сточных вод
- •Термохимическая обработка твердых отходов
- •Теоретические основы защиты окружающей среды от энергетических воздействий.
- •Фильтрование аэрозолей
Адсорбция газовых примесей
Адсорбцией называют процесс избирательного поглощения компонента газа, пара или раствора с помощью адсорбентов - пористых твердых материалов с большой удельной поверхностью.
Газовая среда, из которой происходит поглощение компонента, называется газом-носителем, твердое вещество, поглощающее компонент — адсорбентом, целевой поглощаемый компонент (поглощаемое вещество), находящийся в очищаемом газе, называют адсорбтивом, этот же компонент в адсорбированном состоянии, т.е. поглощенное вещество в адсорбенте - адсорбатом.
Процессы адсорбции являются избирательными и обратимыми. Каждый поглотитель обладает способностью поглощать лишь определенные вещества и не поглощать другие. Поглощенное вещество всегда может быть выделено из поглотителя путем десорбции.
В отличие от абсорбционных методов адсорбция позволяет проводить очистку газов при повышенных температурах. По характеру взаимодействия адсорбата с поверхностью различают физическую и химическую адсорбцию.
При физической адсорбции между молекулами адсорбента и молекулами адсорбируемого вещества не происходит химического взаимодействия. Процесс физической адсорбции может быть обратимым, т. е. чередуются стадии адсорбции и десорбции (выделения поглощенного компонента из адсорбента).
Физическая адсорбция обусловливается силами межмолекулярного взаимодействия (дисперсионный, ориентационный и индукционный эффекты). Межмолекулярные силы слабы, поэтому при физической адсорбции происходит лишь небольшая деформация адсорбированных частиц. Этот вид адсорбции - чисто физический процесс с энергией активации порядка 4…12 кДж/моль. При физической адсорбции поглощаемые молекулы газов и паров удерживаются силами Ван-дер-Ваальса, при хемосорбции - химическими силами.
При химической адсорбции молекулы адсорбента и адсорбтива химически взаимодействуют. Десорбция практически неосуществима. При химической адсорбции выделяется значительно больше теплоты, чем при физической адсорбции.
Для физической адсорбции характерна высокая скорость, малая прочность связи между поверхностью адсорбента и адсорбтивом, малая теплота адсорбции (до 60 кДж/моль). В основе химической адсорбции лежит химическое взаимодействие между адсорбентом и адсорбируемым веществом. Действующие при этом силы значительно больше, чем при физической адсорбции, а высвобождающееся тепло совпадает с теплом химической реакции (она колеблется в пределах 20…400 кДж/моль).
Величины физической и химической адсорбции с ростом температуры уменьшаются, однако при определенной температуре физическая адсорбция может скачкообразно перейти в активированную.
При адсорбции возможны очень большие скорости поглощения и полное извлечение компонентов, выделение которых путем абсорбции было бы невозможно из-за их малой концентрации в смеси.
Адсорбцию применяют для очистки газов с невысоким содержанием газообразных или парообразных загрязнений до получения их очень низких объемных концентраций. Адсорбцию применяют для улавливания из газов, вентиляционных выбросов сернистых соединений, углеводородов, хлора, окислов азота, паров органических растворителей и др.
Адсорбция продолжает оставаться основным способом очистки технологических газовых выбросов. В принципе, адсорбция может быть применена для извлечения любых загрязнителей из газового потока. На практике область ее применения ограничена рядом эксплуатационных, технических и экономических условий. Так, по требованиям пожаро- и взрывобезопасности нельзя подвергать адсорбционной обработке газы с содержанием взрыво- опасных компонентов более 2/3 от нижнего концентрационного предела воспламенения.
Адсорбция может протекать в неподвижном слое, перемещающемся (движущемся) слое, кипящем слое адсорбента.
На практике в качестве адсорбентов выгодно использовать вещества с развитой удельной (на единицу объема) поверхностью.
Количество адсорбата, удерживаемое на единичной площади поверхности раздела фаз, в конечном счете определяется силой взаимодействия между молекулами адсорбируемого вещества и частицами, находящимися в приповерхностных слоях адсорбента.
Силы, возникающие при взаимодействии квантовых электрических полей частиц, участвующих в процессе адсорбции, называют Ван-дер-ваальсовыми или дисперсионными силами. Дисперсионные силы действуют на границе раздела фаз и аналогичны силам взаимодействия между молекулами в объеме газа (силам межмолекулярного взаимодействия), обуславливающим отклонение характеристик реальных га- зов от идеальных.
Адсорбент - твердое тело, на поверхности и в порах которого происходит адсорбция. Адсорбенты отличаются высокой пористостью, имеют большую удельную поверхность. Промышленные адсорбенты изготавливают из твердых пористых материалов и используют в дробленном, гранулированном или порошкообразном виде.
Адсорбент должен иметь высокую сорбционную емкость, т.е. возможность поглощать большое количество адсорбтива при его малой концентрации в газовой среде, что зависит от удельной площади поверхности и физико- химических свойств поверхностных частиц.
Адсорбент должен иметь высокую селективность (избирательность) в отношении адсорбируемого компонента. Он должен обладать достаточной механической прочностью. Чтобы аэродинамическое сопротивление слоя было невысоким, плотность адсорбента должна быть небольшой, а форма частиц обтекаемой и создавать высокую порозность насыпки. Адсорбент для процесса физической сорбции должен быть химически инертным по отношению к компонентам очищаемой газовой среды, а для химической сорбции (хемосорбции) - вступать с молекулами загрязнителей в химическую реакцию.
Различают истинную, кажущуюся и насыпную плотность адсорбента. Истинная плотность - масса единицы объема плотного адсорбента (т. е. без учета пор). Кажущаяся плотность - масса единицы объема пористого материала адсорбента. Под насыпной плотностью понимают массу единицы объема слоя адсорбента, включая объем пор в гранулах адсорбента и промежутков между гранулами адсорбента.
Активированный уголь - пористый углеродный адсорбент. Активированный уголь соответствующей марки используют для адсорбции различных компонентов (газов, летучих растворителей и др.), обладающих различными свойствами. Размер гранул активированного угля 1,0…6,0 мм, насыпная плотность 380…600 кг/м3.
Силикагель - синтетический минеральный адсорбент. Силикагель применяется главным образом для поглощения влаги. Он способен удерживать до 50 % влаги к массе адсорбента. Его преимущество по сравнению с активированным углем - негорючесть, низкая температура регенерации (100…200°С), низкая себестоимость при массовом производстве, относительно высокая механическая прочность.
Алюмогель - активная окись алюминия. Алюмогели стойки к воздействию капельной влаги. Гидрофильный адсорбент с развитой пористой структурой. Используется, как и силикагель, для осушки газов и поглощения из них ряда полярных органических веществ. Благодаря своим положительным свойствам (доступность, стойкость к воздействию жидкостей и др.) широко применяется.
Цеолиты - алюмосиликаты, содержащие оксиды щелочных и щелочноземельных металлов. Характеризуются регулярной структурой пор, размеры которых соизмеримы с размерами молекул. Этот адсорбент называют «молекулярные сита» за их способность разделять вещества на молекулярном уровне благодаря структуре и размерам своих пор.
Иониты – высокомолекулярные соединения природного и искусственного происхождения. Не нашли пока широкого применения для очистки отходящих газов.
Единственным адсорбентом, удовлетворительно работающим во влажных средах, является активированный уголь. Он удовлетворяет и большинству других требований, в связи с чем широко применяется. Одним из основных недостатков активированного угля является химическая нестойкость к кислороду, особенно при повышенных температурах.
Остальные адсорбенты проявляют, как правило, селективность к улавливанию загрязнителей.
Адсорбционные явления развиваются на границе твердой или жидкой фазы с другой жидкой фазой или газом. Наибольшее практическое значение имеет адсорбция на поверхности твердых частиц.
При адсорбции может происходить «проскок» компонента, когда адсорбент перестает поглощать его. Под активностью адсорбента понимают его способность поглощать вещество. Адсорбенты характеризуются статической и динамической активностью.
Динамическая активность адсорбента - количество вещества, поглощенное единицей веса (объема) адсорбента за время от начала адсорбции до начала проскока.
Статическая активность адсорбента - количество вещества, поглощенное тем же количеством адсорбента за время от начала адсорбции до установления равновесия.
Динамическая активность всегда меньше статической, поэтому расход адсорбента определяется по его динамической активности. От активности адсорбента зависят размеры адсорбционной аппаратуры, эффективность очистки газов.
Процесс адсорбции в течение определенного времени протекает при постоянном значении степени поглощения адсорбируемого вещества. Это время называется временем защитного действия слоя адсорбента.
Поглотительная способность адсорбентов выражается концентрацией адсорбата в массовой или объемной единице адсорбента. Процесс адсорбции сопровождается выделением тепла, поэтому снижение температуры способствует его проведению.
Процессы адсорбции проводят периодически или, если адсорбент движется через аппарат, непрерывно.
Адсорбция в слое неподвижного адсорбента является периодическим процессом, при котором концентрация поглощаемого вещества в адсорбенте и в парогазовой фазе меняется во времени и в пространстве.
Процесс адсорбции складывается из последовательно протекающих стадий диффузии молекул поглощаемого вещества из потока газа к внешней поверхности адсорбента (внешняя диффузия), проникновения молекул внутри пористого поглотителя (внутренняя диффузия) и сорбции (конденсации) молекул на внутренней поверхности пор.
Адсорбционные процессы носят циклический характер, т.к. необходима периодическая регенерация насыщенных целевыми компонентами поглотителей.
Процесс извлечения адсорбированного вещества из адсорбента называется десорбцией. Освобожденный от поглощенного вещества адсорбент может быть использован вторично. Процесс десорбции ведут, используя повышение температуры, вытеснение адсорбата лучше сорбирующимся веществом, снижение давления или комбинацию этих приемов.
При термической десорбции насыщенный адсорбент нагревают путем прямого контакта с потоком водяного пара, горячего воздуха или инертного газа, либо нагревают через стенку с подачей отдувочного инертного газа.
Вытеснительная десорбция (холодная десорбция) основана на сорбируемости целевого компонента и вещества, используемого в качестве вытеснителя (десорбента). Для десорбции органических веществ можно использовать диоксид углерода, аммиак, воду, некоторые органические вещества.
Десорбция снижением давления может быть реализована редуцированием давления в системе после насыщения поглотителя под избыточным давлением или созданием в системе разрежения при проведении стадии адсорбции под нормальным давлением.