
- •Классификация вод и свойства водных дисперсных систем
- •Классификация промышленных отходов
- •Очистка воздуха от аэрозольных примесей
- •Абсорбция газовых примесей
- •Адсорбция газовых примесей
- •Теория процесса катализа
- •Высокотемпературное обезвреживание газовых выбросов
- •Конденсация газообразных примесей
- •Диффузионные процессы в атмосфере
- •Распространение загрязнений в атмосфере.
- •Разбавление примесей в гидросфере
- •Разбавление сточных вод при спуске в водоемы
- •Центробежное осаждение примесей из сточных вод
- •Физико-химические методы очистки сточных вод
- •Коагуляция и флокуляция загрязнений сточных вод
- •Флотационная очистка сточных вод
- •Очистка сточных вод адсорбцией.
- •Ионный обмен в растворах сточных вод
- •Очистка сточных вод экстракцией загрязнений
- •Обратный осмос и ультрафильтрация в растворах сточных вод
- •Десорбция, дезодорация и дегазация растворенных примесей
- •Электрохимические методы очистки сточных вод
- •Окисление загрязнителей сточных вод
- •Очистка сточных вод восстановлением
- •Термические методы кондиционирования осадков сточных вод
- •Термохимическая обработка твердых отходов
- •Теоретические основы защиты окружающей среды от энергетических воздействий.
- •Фильтрование аэрозолей
Фильтрование аэрозолей
Для тонкой очистки газов от частиц и капельной жидкости применяют процесс фильтрования. Фильтрование заключается в пропускании аэрозоля через фильтровальные перегородки, которые допускают прохождение воздуха, но задерживают аэрозольные частицы.
В фильтр поступает загрязненный газ, частицы примесей оседают на входной части волокнистой перегородки (фильтроэлемента) и задерживаются в порах между волокон, образуя на поверхности перегородки слой.
Фильтрование запыленного потока через слой пористого материала - сложный процесс, включающий действие ситового эффекта, инерционного столкновения, броуновской диффузии, касания (зацепления), действия гравитационных и электрических сил.
При приближении частицы к волокну действует несколько механизмов, которые могут привести к ее улавливанию:
1) касание;
2) инерционный захват;
3) диффузия;
4) электростатическое осаждение;
5) термофорез;
6) гравитационное осаждение;
7) ситовой эффект.
Осаждение частиц на поверхности пор фильтрующего элемента происходит в результате совокупного действия эффекта зацепления, а также диффузионного, инерционного и гравитационного механизмов. Пыль при фильтровании в основном задерживается в результате столкновения частиц с волокнами и нитями фильтровального материала и прилипания частиц к волокнам.
Касание. Частица переносится вдоль линии тока газа к нити или волокну (препятствию). Если частица движется мимо препятствия на расстоянии меньше своего радиуса, то она касается препятствия и захватывается.
Инерция. Частица находится на линии тока, следуя которой она прошла бы мимо препятствия, не касаясь его, но под действием инерции частица сходит с первоначальной линии тока. В результате она сталкивается с препятствием. Чем больше частица, тем больше ее инерция, лучше условия для захвата. При обычных скоростях течения в фильтрах этот механизм мало эффективен для частиц диаметром менее микрометра.
Диффузия. Частица настолько мала, что ее траектория становится хаотичной из-за броуновского движения. Захват может произойти, если случайное отклонение приводит частицу к волокну. Этот механизм становится наиболее важным, когда размер частиц меньше 0,1 мкм.
Электростатическое осаждение. Частица и препятствие имеют заряды противоположных знаков, вследствие чего частица притягивается к препятствию.
Термофорез. Частица смещается к препятствию под действием градиента температуры.
Гравитационное осаждение. Частица смещается с линии тока, проходящей мимо препятствия, к самому препятствию под действием притяжения между частицей и волокном или под действием земного тяготения. Этот эффект очень мал.
Ситовой эффект. Частица задерживается из-за того, что слишком велика, чтобы пройти через данную пору или канал.
Возможности осаждения за счет ситового эффекта, особенно при прохождении потока через чистую ткань, ограничены, т. к. в большинстве случаев размеры частиц значительно меньше размеров пор.
Процесс фильтрования в наиболее распространенных волокнистых фильтрах можно представить, как движение частиц вблизи изолированного цилиндра (из волокнистого материала), расположенного поперек потока. Влиянием соседних волокон пренебрегают.
Проходя через фильтрующую перегородку, поток газа разделяется на тонкие непрерывно разъединяющиеся и смыкающиеся струйки. Частицы, обладая инерцией, стремятся перемещаться прямолинейно, сталкиваются с волокнами, зернами и удерживаются ими. Считают, что поток имеет безвихревое движение, а частицы - сферическую форму, частицы при соприкосновении с цилиндрическими волокнами на их поверхности задерживаются силами межмолекулярного взаимодействия. Расстояния между цилиндрическими волокнами весьма значительны по сравнению с размерами частиц (в 5…10 раз превышают размеры частиц).
При движении потока через фильтровальный материал газ огибает волокна, более крупные частицы пыли под действием сил инерции сохраняют прежнее прямолинейное направление движения и, сталкиваясь с волокнами, захваты- ваются и прилипают к ним. Такой механизм характерен для захвата крупных частиц и проявляются сильнее при увеличении скорости фильтрования.
При осаждении одиночной частицы на изолированном волокне касание, инерция и диффузия, вероятно, являются наиболее важными механизмами. Гравитация и термофорез обычно несущественны, электрические силы могут играть и незначительную роль и очень важную. Ситовой эффект не используется.
В случае тканевых фильтров значительная часть процесса улавливания протекает в слое осадка частиц на лобовой поверхности фильтра. Обычные механизмы - касание, инерция и диффузия - действуют лишь в течение небольшой части всего цикла фильтрации. Как только после очистки фильтра образуется новой слой осадка, доминирующим механизмом становится ситовой эффект.
Размер частиц играет важное значение при зацеплении и захвате частиц за счет касания ими поверхности обтекаемого тела. Если пренебречь инерционными эффектами и считать, что частица точно следует в соответствии с линиями тока, то частица осаждается не только в том случае, когда ее траектория пересечется с поверхностью тела, но и в случае пересечения линии тока на расстоянии от поверхности тела, равном ее радиусу. Таким образом, эффективность зацепления выше нуля и тогда, когда инерционное осаждение отсутствует.
Эффект зацепления становится значительным при осаждении частиц на сферах с малым диаметром. Кроме того, они показывают, что осаждение частиц за счет эффекта зацепления не зависит от скорости газов, но в значительной степени определяется режимом течения газового потока
Вероятность столкновения частиц пыли с волокнами фильтровального материала под действием сил инерции является функцией критерия Стокса
Stk = v0 dч ч Cк/(18 0 dв), (3.35)
где dч - диаметр частиц пыли, м; ч - плотность частиц, кг/м3; dв - диаметр ци- линдра (волокна фильтрующего материала), м; v0 - скорость газового потока, м/с; 0 - динамическая вязкость газа, Па.с; Ск - поправка Кенингема, вводится для частиц диаметром порядка длины среднего свободного пробега молекул газа.
Мелкие частицы, обладающие малой инерцией, могут вместе с газовым потоком обогнуть волокно. Самые мелкие частицы могут столкнуться с волокном, участвуя в броуновском движении, и прилипнуть к поверхности волокна.
Может быть определена эффективность осаждения при броуновском движении и под действием электрических сил как часть общей эффективности.
Нужно учесть, что на пути движения запыленного потока расположено обычно несколько рядов волокон, что, естественно, значительно повысит общую эффективность осаждения.
Электростатический механизм захвата пылинок проявляется, когда волокна несут заряды или поляризованы внешним электрическим полем.
Определенное влияние на процесс фильтрации могут иметь электрические силы, особенно при применении диэлектрических фильтровальных волокнистых материалов из смеси шерсти и синтетических материалов, а также диэлектрических насыпных материалов.
По мере осаждения частиц на фильтровальном материале уменьшается размер пор и образуется слой пыли с порами значительно меньшими, чем в незапыленном фильтровальном материале. Собственно рабочим слоем при фильтрации является именно фильтровальный материал с осажденными на нем пылевыми частицами. Он и определяет эффективность очистки. При отложении пыли возрастает гидравлическое сопротивление, уменьшается производительность фильтра. По достижении некоторого значения сопротивления пыль периодически удаляют. Этот процесс называется регенерацией фильтра.
В реальных условиях процесс осаждения пылевых частиц в фильтрах сопровождается коагуляцией частиц и соответствующим изменением проницаемости слоя и, следовательно, эффективности фильтра.
Из-за сложности процесса в фильтрах практически невозможно определить влияние всех факторов на параметры фильтрации.
Обычно при определении эффективности очистки и гидравлического сопротивления фильтра пользуются данными, полученными на основе обобщения результатов экспериментальных исследований.