
- •Гидравлика
- •1. Введение. Основные физические свойства жидкостей и газов. 6
- •2. Основы гидростатики. 31
- •3. Дифференциальные уравнения равновесия покоящейся жидкости 43
- •4. Основы кинематики. 69
- •5. Общие законы и уравнения динамики жидкостей и газов. 90
- •6. Гидравлические потери. 115
- •Введение. Основные физические свойства жидкостей и газов.
- •Предмет гидравлики.
- •Краткая история развития.
- •1.2. Жидкость и силы действующие на нее
- •Вводные сведения. Жидкость как объект изучения гидравлики
- •Основные физические свойства жидкостей и газов. Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Растворение газов
- •Кипение
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Закон жидкостного трения – закон Ньютона
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Определение вязкости жидкости
- •Основы гидростатики.
- •Общие законы и уравнения статики жидкостей и газов. Силы, действующие в жидкостях. Массовые силы
- •Поверхностные силы
- •Силы поверхностного натяжения
- •Силы давления
- •Свойства гидростатического давления
- •Приборы для измерения давления
- •Абсолютный и относительный покой.
- •Дифференциальные уравнения равновесия покоящейся жидкости
- •Прямолинейное равноускоренное движение сосуда с жидкостью
- •Покой при равномерном вращении сосуда с жидкостью
- •Основное уравнение гидростатики. Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести
- •Физический смысл основного закона гидростатики
- •Закон Паскаля. Гидростатическое давление.
- •Определение величины и точки приложения силы гидростатического давления, действующего на плоскую поверхность. Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Гидростатический парадокс
- •Закон Архимеда. Основы теории плавания тел
- •Основы кинематики.
- •Основы кинематики.
- •Виды движения (течения) жидкости
- •Гидравлические характеристики потока жидкости. Расход. В гидравлике различают следующие характеристики потока: живое сечение, смоченный периметр, гидравлический радиус, расход, средняя скорость.
- •Модель идеальной (невязкой) жидкости.
- •Общая интегральная форма уравнений количества движения и момента количества движения. Уравнение неразрывности. Уравнение неразрывности для элементарной струйки жидкости
- •Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
- •Дифференциальные уравнения неразрывности движения жидкости
- •Динамика жидкостей Движение жидкости.
- •Дифференциальные уравнения Эйлера для движения идеальной жидкости
- •Преобразование уравнений Эйлера
- •Исследование уравнений Эйлера
- •Общие законы и уравнения динамики жидкостей и газов. Интегрирование уравнений Эйлера
- •Уравнение Бернулли для элементарной струйки и потока реальной жидкости.
- •Уравнение Бернулли для струйки идеальной жидкости
- •Геометрическая интерпретация уравнения Бернулли
- •Энергетическая интерпретация уравнения Бернулли
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Режимы движения (течения) жидкости. Число Рейнольдса. Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Распределение скоростей при ламинарном и турбулентном режимах движения. Турбулентность и ее основные статистические характеристики.
- •Возникновение турбулентного течения жидкости
- •Возникновение ламинарного режима
- •Подобие гидромеханических процессов.
- •Основы теории подобия, геометрическое и динамическое подобие
- •Критерии подобия для потоков несжимаемой жидкости Критерий подобия Ньютона
- •Критерий подобия Эйлера
- •Критерий подобия Рейнольдса
- •Критерий подобия Фруда
- •Заключение о подобии напорных потоков
- •Гидравлические потери. Гидравлическое сопротивление.
- •Потери напора по длине и местные потери напора. Гидравлические потери по длине
- •Ламинарное течение жидкости
- •Турбулентное течение жидкости
- •Вязкое трение при турбулентном движении
- •Турбулентное течение в трубах
- •Турбулентное течение в гладких трубах
- •Турбулентное течение в шероховатых трубах
- •Выводы из графиков Никурадзе
- •Местные гидравлические потери Местные гидравлические сопротивления
- •Виды местных сопротивлений Внезапное расширение. Теорема Борда - Карно
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
- •4.5. Местные гидравлические сопротивления
- •Истечение жидкости из отверстий и насадков
- •Сжатие струи
- •Истечение через малое отверстие в тонкой стенке
- •Истечение через насадки
- •Расчет гидромеханических процессов. Конечно-разностные формы уравнений Навье-Стокса и Рейнольдса. Дифференциальные уравнения движения вязкой жидкости (уравнения Навье-Стокса)
- •Общая схема применения численных методов и их реализация на эвм.
- •Гидравлический расчет трубопроводов
- •Простые трубопроводы постоянного сечения
- •Последовательное соединение трубопроводов
- •Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •Трубопроводы с насосной подачей жидкости
- •Гидравлический удар в трубопроводах
- •Скорость распространения гидравлической ударной волны в трубопроводе
- •Ударное давление
- •П ротекание гидравлического удара во времени
- •Разновидности гидроудара
- •Список литературы
Температурное расширение жидкости
Температурное расширение жидкости состоит в том, что она может изменять свой объем при изменении температуры. Это свойство характеризуется температурным коэффициентом объемного расширения, представляющим относительное изменение объема жидкости при изменении температуры на единицу (на 1оC) и при постоянном давлении:
По аналогии со свойством сжимаемости жидкости можно записать
или через плотность
Изменение объёма при изменении температуры происходит за счёт изменения плотности.
Для большинства жидкостей коэффициент t с увеличением давления уменьшается. Коэффициент t с уменьшением плотности нефтепродуктов от 920 до 700 кг/м3 увеличивается от 0,0006 до 0,0008; для рабочих жидкостей гидросистем t обычно принимают не зависящим от температуры. Для этих жидкостей увеличение давления от атмосферного до 60 МПа приводит к росту t примерно на 10 – 20 %. При этом, чем выше температура рабочей жидкости, тем больше увеличение t. Для воды с увеличением давления при температуре до 50 оC t растёт, а при температуре выше 50 оC уменьшается.
Растворение газов
Растворение газов - способность жидкости поглощать (растворять) газы, находящиеся в соприкосновении с ней. Все жидкости в той или иной степени поглощают и растворяют газы. Это свойство характеризуется коэффициентом растворимости kр.
Е
сли
в закрытом сосуде жидкость находится
в контакте с газом при давлении P1,
то газ начнёт растворяться в жидкости.
Через какое-то время
произойдёт насыщение жидкости газом и давление в сосуде изменится. Коэффициент растворимости связывает изменение давления в сосуде с объёмом растворённого газа и объёмом жидкости следующим соотношением
где WГ – объём растворённого газа при нормальных условиях,
Wж – объём жидкости,
P1 и P2 – начальное и конечное давление газа.
Коэффициент растворимости зависит от типа жидкости, газа и температуры.
При температуре 20 ºС и атмосферном давлении в воде содержится около 1,6% растворенного воздуха по объему (kp = 0,016). С увеличением температуры от 0 до 30 ºС коэффициент растворимости воздуха в воде уменьшается. Коэффициент растворимости воздуха в маслах при температуре 20 ºС равен примерно 0,08 – 0,1. Кислород отличается более высокой растворимостью, чем воздух, поэтому содержание кислорода в воздухе, растворенном в жидкости, примерно на 50% выше, чем в атмосферном. При уменьшении давления газ из жидкости выделяется. Процесс выделения газа протекает интенсивнее, чем растворение.
Кипение
К
ипение
– способность жидкости переходить в
газообразное состояние. Иначе это
свойство жидкостей называют испаряемостью.
Жидкость можно довести до кипения повышением температуры до значений, больших температуры кипения при данном давлении, или понижением давления до значений, меньших давления насыщенных паров pнп жидкости при данной температуре. Образование пузырьков при понижении давления до давления насыщенных паров называется холодным кипением.
Жидкость, из которой удален растворенный в ней газ, называется дегазированной. В такой жидкости, кипение не возникает и при температуре, большей температуры кипения при данном давлении.