
- •Гидравлика
- •1. Введение. Основные физические свойства жидкостей и газов. 6
- •2. Основы гидростатики. 31
- •3. Дифференциальные уравнения равновесия покоящейся жидкости 43
- •4. Основы кинематики. 69
- •5. Общие законы и уравнения динамики жидкостей и газов. 90
- •6. Гидравлические потери. 115
- •Введение. Основные физические свойства жидкостей и газов.
- •Предмет гидравлики.
- •Краткая история развития.
- •1.2. Жидкость и силы действующие на нее
- •Вводные сведения. Жидкость как объект изучения гидравлики
- •Основные физические свойства жидкостей и газов. Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Растворение газов
- •Кипение
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Закон жидкостного трения – закон Ньютона
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Определение вязкости жидкости
- •Основы гидростатики.
- •Общие законы и уравнения статики жидкостей и газов. Силы, действующие в жидкостях. Массовые силы
- •Поверхностные силы
- •Силы поверхностного натяжения
- •Силы давления
- •Свойства гидростатического давления
- •Приборы для измерения давления
- •Абсолютный и относительный покой.
- •Дифференциальные уравнения равновесия покоящейся жидкости
- •Прямолинейное равноускоренное движение сосуда с жидкостью
- •Покой при равномерном вращении сосуда с жидкостью
- •Основное уравнение гидростатики. Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести
- •Физический смысл основного закона гидростатики
- •Закон Паскаля. Гидростатическое давление.
- •Определение величины и точки приложения силы гидростатического давления, действующего на плоскую поверхность. Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Гидростатический парадокс
- •Закон Архимеда. Основы теории плавания тел
- •Основы кинематики.
- •Основы кинематики.
- •Виды движения (течения) жидкости
- •Гидравлические характеристики потока жидкости. Расход. В гидравлике различают следующие характеристики потока: живое сечение, смоченный периметр, гидравлический радиус, расход, средняя скорость.
- •Модель идеальной (невязкой) жидкости.
- •Общая интегральная форма уравнений количества движения и момента количества движения. Уравнение неразрывности. Уравнение неразрывности для элементарной струйки жидкости
- •Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
- •Дифференциальные уравнения неразрывности движения жидкости
- •Динамика жидкостей Движение жидкости.
- •Дифференциальные уравнения Эйлера для движения идеальной жидкости
- •Преобразование уравнений Эйлера
- •Исследование уравнений Эйлера
- •Общие законы и уравнения динамики жидкостей и газов. Интегрирование уравнений Эйлера
- •Уравнение Бернулли для элементарной струйки и потока реальной жидкости.
- •Уравнение Бернулли для струйки идеальной жидкости
- •Геометрическая интерпретация уравнения Бернулли
- •Энергетическая интерпретация уравнения Бернулли
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Режимы движения (течения) жидкости. Число Рейнольдса. Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Распределение скоростей при ламинарном и турбулентном режимах движения. Турбулентность и ее основные статистические характеристики.
- •Возникновение турбулентного течения жидкости
- •Возникновение ламинарного режима
- •Подобие гидромеханических процессов.
- •Основы теории подобия, геометрическое и динамическое подобие
- •Критерии подобия для потоков несжимаемой жидкости Критерий подобия Ньютона
- •Критерий подобия Эйлера
- •Критерий подобия Рейнольдса
- •Критерий подобия Фруда
- •Заключение о подобии напорных потоков
- •Гидравлические потери. Гидравлическое сопротивление.
- •Потери напора по длине и местные потери напора. Гидравлические потери по длине
- •Ламинарное течение жидкости
- •Турбулентное течение жидкости
- •Вязкое трение при турбулентном движении
- •Турбулентное течение в трубах
- •Турбулентное течение в гладких трубах
- •Турбулентное течение в шероховатых трубах
- •Выводы из графиков Никурадзе
- •Местные гидравлические потери Местные гидравлические сопротивления
- •Виды местных сопротивлений Внезапное расширение. Теорема Борда - Карно
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
- •4.5. Местные гидравлические сопротивления
- •Истечение жидкости из отверстий и насадков
- •Сжатие струи
- •Истечение через малое отверстие в тонкой стенке
- •Истечение через насадки
- •Расчет гидромеханических процессов. Конечно-разностные формы уравнений Навье-Стокса и Рейнольдса. Дифференциальные уравнения движения вязкой жидкости (уравнения Навье-Стокса)
- •Общая схема применения численных методов и их реализация на эвм.
- •Гидравлический расчет трубопроводов
- •Простые трубопроводы постоянного сечения
- •Последовательное соединение трубопроводов
- •Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •Трубопроводы с насосной подачей жидкости
- •Гидравлический удар в трубопроводах
- •Скорость распространения гидравлической ударной волны в трубопроводе
- •Ударное давление
- •П ротекание гидравлического удара во времени
- •Разновидности гидроудара
- •Список литературы
Предмет гидравлики.
Механика, как раздел физики, изучает законы равновесия и движения материальных тел различных видов. Она разделяется на:
механику твёрдого тела, которая изучает покой и движение тел как совокупности сильно связанных материальных точек;
механику сыпучих сред, изучающую движение песчаных грунтов, зерна и других аналогичных тел;
механику жидких сред, в которой изучают равновесие и движение жидкости.
Часть механики жидких сред, которая рассматривает движение жидкости, а также силовое взаимодействие между жидкостью и обтекаемыми ею телами или ограничивающими ее поверхностями, называется гидромеханикой.
Раздел механики, в котором изучают движение газов и жидкостей и обтекание ими тел, называют аэромеханикой.
Прикладную часть гидромеханики, для которой характерен определенный круг технических вопросов, задач и методов их решения, называют технической механикой жидкости, или гидравликой.
Обычно гидравлику определяют как науку о законах равновесия и движения жидкостей и о способах приложения этих законов к решению практических задач. В гидравлике рассматриваются главным образом потоки жидкости, ограниченные и направленные твердыми стенками, т. е. течения в открытых и закрытых руслах (каналах). Можно сказать, таким образом, что в гидравлике изучают внутренние течения жидкостей и решают так называемую «внутреннюю» задачу в отличие от «внешней» задачи, связанной с внешним обтеканием тел сплошной средой, которое имеет место при движении твердого тела в жидкости или газе (воздухе). «Внешнюю» задачу рассматривают в собственно гидромеханике или аэрогидромеханике. Этот раздел в основном связан с потребностями авиации и судостроения.
В гидравлике при решении различных практических задач широко используются те или иные допущения и предположения, упрощающие рассматриваемый вопрос. Достаточно часто гидравлические решения основываются на результатах экспериментов, и потому в гидравлике применяется относительно много различных эмпирических и полуэмпирических формул. При этом, как правило, оцениваются только главные характеристики изучаемого явления и часто используются те или иные интегральные и осредненные величины, которые дают достаточную для технических задач характеристику рассматриваемых явлений.
По своему характеру техническая механика (гидравлика) близка к известным дисциплинам — сопротивлению материалов и строительной механике, в которых под тем же углом зрения изучаются вопросы механики твердого тела. Следует учитывать, что гидравлика, являясь общетехнической дисциплиной, может рассматриваться как «профессиональная физика жидкого тела», в которой, в частности, даются основы соответствующих гидравлических расчетов. Эти расчёты используются при проектировании инженерных гидротехнических сооружений, конструкций, а также гидросистем технологического оборудования, применяемых во многих областях техники.
Разумеется, что гидравлика разделяется на статику жидкости (гидростатику), кинематику потоков жидкости и динамику жидкости (гидродинамику).
Метод, применяемый в современной гидравлике при исследовании движения, заключается в следующем. Исследуемые явления сначала упрощают, и к ним применяют законы теоретической механики. Затем полученные результаты сравнивают с данными опытов, выясняют степень расхождения, уточняют и исправляют теоретические выводы и формулы для приспособления их к практическому использованию. Целый ряд явлений, крайне трудно поддающихся теоретическому анализу, ввиду своей сложности, исследуют экспериментальным путем, а результаты такого исследования представляют в виде эмпирических формул.
Особенно велико значение гидравлики в машиностроении, где приходится иметь дело с закрытыми потоками в трубах и давлениями, многократно превышающими атмосферное. Гидросистемы, состоящие из насосов, трубопроводов, различных гидроагрегатов, широко используют в машиностроении в качестве устройств передачи и преобразования энергии, жидкостного охлаждения, топливоподачи, смазки и др.
Можно также отметить, что имеет место и другой подход к классификации разделов механики жидких сред. В этом подходе говорят о двух разных методах исследования:
метод «технической механики жидкости» («технической гидромеханики», «гидравлики»),
метод «математической механики жидкости» («математической гидромеханики»).
В математической механике жидкости широко используется относительно сложный математический аппарат. Решения, получаемые в этом случае, оказываются более строгими в математическом отношении.
Как показал опыт, методы математической механики жидкости очень часто оказываются столь сложными, что громадное большинство практических задач, следуя этим методам, решить невозможно. Этим и объясняется возникновение и развитие технической, прикладной науки — технической механики жидкости, т. е. гидравлики, которая стремится дать приближенные ответы на все те вопросы, связанные с движущейся или покоящейся жидкостью, которые ставит перед нами практика.
Можно сказать, что в технической гидромеханике (в гидравлике) приближенно решаются сложные задачи при помощи простых методов. В математической же гидромеханике относительно точно решаются только некоторые простейшие задачи при помощи сложных методов.