
- •Гидравлика
- •1. Введение. Основные физические свойства жидкостей и газов. 6
- •2. Основы гидростатики. 31
- •3. Дифференциальные уравнения равновесия покоящейся жидкости 43
- •4. Основы кинематики. 69
- •5. Общие законы и уравнения динамики жидкостей и газов. 90
- •6. Гидравлические потери. 115
- •Введение. Основные физические свойства жидкостей и газов.
- •Предмет гидравлики.
- •Краткая история развития.
- •1.2. Жидкость и силы действующие на нее
- •Вводные сведения. Жидкость как объект изучения гидравлики
- •Основные физические свойства жидкостей и газов. Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Растворение газов
- •Кипение
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Закон жидкостного трения – закон Ньютона
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Определение вязкости жидкости
- •Основы гидростатики.
- •Общие законы и уравнения статики жидкостей и газов. Силы, действующие в жидкостях. Массовые силы
- •Поверхностные силы
- •Силы поверхностного натяжения
- •Силы давления
- •Свойства гидростатического давления
- •Приборы для измерения давления
- •Абсолютный и относительный покой.
- •Дифференциальные уравнения равновесия покоящейся жидкости
- •Прямолинейное равноускоренное движение сосуда с жидкостью
- •Покой при равномерном вращении сосуда с жидкостью
- •Основное уравнение гидростатики. Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести
- •Физический смысл основного закона гидростатики
- •Закон Паскаля. Гидростатическое давление.
- •Определение величины и точки приложения силы гидростатического давления, действующего на плоскую поверхность. Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Гидростатический парадокс
- •Закон Архимеда. Основы теории плавания тел
- •Основы кинематики.
- •Основы кинематики.
- •Виды движения (течения) жидкости
- •Гидравлические характеристики потока жидкости. Расход. В гидравлике различают следующие характеристики потока: живое сечение, смоченный периметр, гидравлический радиус, расход, средняя скорость.
- •Модель идеальной (невязкой) жидкости.
- •Общая интегральная форма уравнений количества движения и момента количества движения. Уравнение неразрывности. Уравнение неразрывности для элементарной струйки жидкости
- •Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
- •Дифференциальные уравнения неразрывности движения жидкости
- •Динамика жидкостей Движение жидкости.
- •Дифференциальные уравнения Эйлера для движения идеальной жидкости
- •Преобразование уравнений Эйлера
- •Исследование уравнений Эйлера
- •Общие законы и уравнения динамики жидкостей и газов. Интегрирование уравнений Эйлера
- •Уравнение Бернулли для элементарной струйки и потока реальной жидкости.
- •Уравнение Бернулли для струйки идеальной жидкости
- •Геометрическая интерпретация уравнения Бернулли
- •Энергетическая интерпретация уравнения Бернулли
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Режимы движения (течения) жидкости. Число Рейнольдса. Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Распределение скоростей при ламинарном и турбулентном режимах движения. Турбулентность и ее основные статистические характеристики.
- •Возникновение турбулентного течения жидкости
- •Возникновение ламинарного режима
- •Подобие гидромеханических процессов.
- •Основы теории подобия, геометрическое и динамическое подобие
- •Критерии подобия для потоков несжимаемой жидкости Критерий подобия Ньютона
- •Критерий подобия Эйлера
- •Критерий подобия Рейнольдса
- •Критерий подобия Фруда
- •Заключение о подобии напорных потоков
- •Гидравлические потери. Гидравлическое сопротивление.
- •Потери напора по длине и местные потери напора. Гидравлические потери по длине
- •Ламинарное течение жидкости
- •Турбулентное течение жидкости
- •Вязкое трение при турбулентном движении
- •Турбулентное течение в трубах
- •Турбулентное течение в гладких трубах
- •Турбулентное течение в шероховатых трубах
- •Выводы из графиков Никурадзе
- •Местные гидравлические потери Местные гидравлические сопротивления
- •Виды местных сопротивлений Внезапное расширение. Теорема Борда - Карно
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
- •4.5. Местные гидравлические сопротивления
- •Истечение жидкости из отверстий и насадков
- •Сжатие струи
- •Истечение через малое отверстие в тонкой стенке
- •Истечение через насадки
- •Расчет гидромеханических процессов. Конечно-разностные формы уравнений Навье-Стокса и Рейнольдса. Дифференциальные уравнения движения вязкой жидкости (уравнения Навье-Стокса)
- •Общая схема применения численных методов и их реализация на эвм.
- •Гидравлический расчет трубопроводов
- •Простые трубопроводы постоянного сечения
- •Последовательное соединение трубопроводов
- •Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •Трубопроводы с насосной подачей жидкости
- •Гидравлический удар в трубопроводах
- •Скорость распространения гидравлической ударной волны в трубопроводе
- •Ударное давление
- •П ротекание гидравлического удара во времени
- •Разновидности гидроудара
- •Список литературы
Возникновение турбулентного течения жидкости
Если на каком-то участке трубопровода существует турбулентный поток, то это не значит, что такой же характер сохраняется во всей трубе. На различных участках трубопровода и даже на одних и тех же участках в разные периоды времени поток может иметь различный характер. Это может определяться либо различными диаметрами трубопроводов, либо изменением скорости течения жидкости. Во всех случаях при возникновении условий турбулентного режима он устанавливается в трубе не мгновенно. Это происходит в течение некоторого времени на участке трубы определённой длины. Рассмотрим процесс возникновения турбулентного режима движения.
Переход к турбулентному режиму может происходить из ламинарного, например, в результате плавного или внезапного изменения диаметра трубы Такой же переход возможен за счёт изменения скорости движения жидкости. К образованию турбулентного режима может приводить также и изменение формы потока жидкости.
Кроме перечисленных возможны и другие причины, особенно при режимах, характеризующихся числами Рейнольдса, близкими к критическому.
.
На основании опыта
установлено следующее. Когда создаются
условия для такого перехода, например,
сужение проходного сечения трубы
достигает значения, при котором поток
может стать турбулентным, по периферии
потока ламинарный слой нарушается и
дальше по течению развивается турбулентный
пограничный слой.
Толщина этого слоя из-за турбулентного
перемешивания достаточно быстро
увеличивается, и турбулентный поток
заполняет всё сечение трубопровода.
Участок, на котором происходит превращение
ламинарного режима движения в турбулентный,
называется разгонным
участком.
Его длина
по экспериментальным данным равна
,
где d – диаметр трубопровода.
Возникновение ламинарного режима
В реальных гидросистемах, даже при ламинарном режиме течения жидкости в круглых трубах, на пути потока встречаются участки с другой геометрией. Это могут быть соединения труб, изгибы, гидроаппараты и т.п. На таких участках характер потока меняется, режим движения становится турбулентным.
Однако после прохождения такого участка при входе жидкости в прямую трубу при соответствующей скорости устанавливается параболическое распределение скоростей. Поток снова стремится к ламинарному режиму движения. Происходит это не моментально, а в течение некоторого времени на отрезке трубы определённой длины. Такой отрезок называют начальным участком ламинарного течения lнач.
Длину такого участка можно определить из формулы Шиллера
,
г
де
d
– диаметр трубы.
Отсюда, если в качестве Re взять критическое число Рейнольдса легко получить, что максимально возможная длина такого участка равна
Потери энергии на этом участке будут несколько больше, чем в остальной части трубы. С учётом этого формула для расчёта потерь напора на трение hтр при ламинарном движении в круглых гладких трубах принимает вид
Для коротких труб такое уточнение потерь напора может иметь существенное значение, для длинных величину 0,165 можно не учитывать.
Подобие гидромеханических процессов.
В процессе проектирования различных гидросистем, трубопроводов, гидротехнических сооружений, гидравлических и газовых систем химических и нефтехимических предприятий нередко возникает необходимость не только математического, но и натурного моделирования. В таком случае необходимо, чтобы работа гидросистемы действующей модели соответствовала функционированию реального объекта. Это означает, что различные характеристики потоков жидкости, которые имеют место в модели и в реальной системе, должны описываться одинаковыми закономерностями, хотя их численные значения могут существенно различаться. В натурной модели они меньше (как правило) или больше (встречается реже), чем в действительности. Для этого необходимо иметь критерии, которые позволяли ли бы «масштабировать» реальную систему. Эти критерии устанавливаются в теории подобия потоков жидкости.