Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по гидравлике 2.doc
Скачиваний:
2
Добавлен:
03.01.2020
Размер:
3.89 Mб
Скачать

Основное уравнение гидростатики. Основное уравнение гидростатики

О пределим величину давления внутри покоящейся жидкости. С этой целью рассмотрим произвольную точку А, находящуюся на глубине ha. Вблизи этой точки выделим элементарную площадку dS. Если жидкость покоится, то и т. А находится в равновесии, что означает уравновешенность сил, действующих на площадку.

A – произвольная точка в жидкости,

ha глубина т. А,

P0 - давление внешней среды,

 - плотность жидкости,

Pa – давление в т. А,

dS – элементарная площадка.

Сверху на площадку действует внешнее давление P0 (в случае, если свободная поверхность граничит с атмосферой, то ) и вес столба жидкости. Снизу – давление в т. А. Уравнение сил, действующих на площадку, в этих условиях примет вид:

.

Разделив это выражение на dS и учтя, что т. А выбрана произвольно, получим выражение для P в любой точке покоящейся жидкости:

;

где hглубина жидкости, на которой определяется давление P.

Полученное выражение носит название основного уравнения гидростатики.

Следствия основного уравнения гидростатики

Во-первых, из основного уравнения гидростатики следует, что для любой точки жидкости в состав величины давления входит P0 - давление, которое приложено к граничной поверхности жидкости извне. Эта составляющая одинакова для любой точки жидкости. Поэтому из основного уравнения гидростатики следует закон Паскаля, который гласит: давление, приложенное к граничной поверхности покоящейся жидкости, передаётся всем точкам этой жидкости по всем направлениям одинаково. Следует подчеркнуть, что давление во всех точках не одинаково. Одинакова лишь та часть (составляющая), которая приложена к граничной поверхности жидкости. Закон Паскаля – основной закон, на основе которого работает объёмный гидропривод, применяемый в абсолютном большинстве гидросистем технологических машин.

Вторым следствием является тот факт, что на равной глубине в покоящейся жидкости давление одинаково. В результате можно говорить о поверхностях равного давления. Для жидкости, находящейся в абсолютном покое или равномерно движущейся, эти поверхности – горизонтальные плоскости. В других случаях относительного покоя, которые будут рассмотрены ниже, поверхности равного давления могут иметь другую форму или не быть горизонтальными. Существование поверхностей равного давления позволяет измерять давление в любой точке жидкости.

Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести

Сначала рассмотрим простейший случай покоя. Жидкость находится под действием силы тяжести. Это означает, что проекции ускорений на оси X и Y отсутствуют. Единственным ускорением является ускорение свободного падения g, т. е.:

, , .

Тогда полный дифференциал давления после подстановки в него ускорений примет вид:

.

После интегрирования этого выражения получим:

.

Постоянную интегрирования, равную

,

найдём, подставив параметры свободной поверхности и .

После подстановки этих значений в интеграл P будем иметь равенство:

Переписав это выражение в другом виде, получим

Если обозначить (Z0 - Z) через h, то приведённое равенство примет уже знакомый вид основного уравнения гидростатики

.

Из этого же равенства можно получить следующий вид

,

или

Последнее выражение часто называют основным законом гидростатики.