
- •Курс лекций
- •Оглавление
- •Требования к обязательному минимуму содержания основной образовательной программы по направлению подготовки дипломированного специалиста «Строительство»
- •Лекция 1. Введение в предмет «Гидравлика». Основные свойства жидкостей и газов
- •1.1. Предмет гидравлики
- •1.2. История предмета
- •1.3. Капельные и некапельные жидкости
- •1.4. Силы, действующие в жидкости
- •1.5. Давление и его свойства
- •1.6. Основные физические свойства жидкостей
- •1.7. Вязкость. Идеальная жидкость
- •Практическое применение теоретических знаний Пример 1-1
- •Пример 1-2
- •Лекция 2. Основы гидростатики, динамики и кинематики жидкости
- •2.1. Тема 1. Равновесие жидкости
- •2.1.1. Дифференциальное уравнение равновесия жидкости. Поверхность равного давления
- •2.1.2. Основное уравнение гидростатики
- •2.1.3. Закон Паскаля
- •2.1.4. Абсолютное, манометрическое и вакуумметрическое давление
- •2.1.5. Сила давления на плоские и криволинейные поверхности
- •1. Сила давления на отдельный элемент поверхности.
- •2. Результирующая сила давления на стенку.
- •3. Сила давления жидкости на дно резервуара.
- •4. Сила давления на вертикальную прямоугольную стенку.
- •5. Сила давления на криволинейную поверхность.
- •6. Сила давления на цилиндрическую поверхность.
- •2.1.6. Относительный покой жидкости
- •2.1.7. Закон Архимеда
- •1. Равновесие твердого тела в жидкости.
- •2. Равновесие жидкости.
- •3. Условия равновесия плавающих тел.
- •2.1.8. Основное уравнение гидростатики для сжимаемой жидкости
- •2.1.9. Изотермическая атмосфера
- •2.1.10. Неизотермическая атмосфера
- •2.2. Тема 2. Основы кинематики и динамики жидкости и газа
- •2.2.1. Основные понятия кинематики жидкости
- •2.2.2. Уравнение неразрывности
- •2.2.3. Виды движения жидкости
- •2.2.4. Интегральная формула количества движения
- •2.2.5. Дифференциальное уравнение движения невязкой жидкости (уравнение Эйлера)
- •2.2.6. Общее уравнение энергии в интегральной форме (Уравнение Бернулли для потока реальной жидкости)
- •2.2.7. Три формы представления уравнения Бернулли для потока реальной жидкости
- •2.2.9. Особенности турбулентного и ламинарного течения жидкости. Число Рейнольдса
- •2.2.10. Уравнение Бернулли для элементарной струйки невязкой сжимаемой жидкости
- •2.2.11. Уравнение Бернулли для потока вязкой сжимаемой жидкости
- •Пример применения уравнения Бернулли для расчета коротких трубопроводов
- •Лекция 3. Основы моделирования гидромеханических процессов
- •3.1. Основы моделирования
- •3.2. Виды подобия. Масштабы моделирования
- •3.3. Критерии подобия
- •3.4. Конечно-разностная форма уравнения Навье-Стокса
- •3.5. Общая схема применения численных методов и их реализация на эвм
- •3.6. Измерительные приборы, используемые при проведении экспериментальных работ
- •1. Жидкостные манометры прямого действия.
- •2. Механические манометры.
- •3. Барометры.
- •4. Вакуумметры.
- •5. Трубка Пито–Прандтля.
- •6. Расходомер Вентури.
- •7. Ротаметры.
- •Лекция 4. Гидравлические сопротивления
- •4.1. Виды гидравлических сопротивлений
- •4.2 Сопротивление по длине при движении в цилиндрической трубе при ламинарном течении
- •4.3. Формула Дарси-Вейсбаха
- •4.4. Турбулентное движение в гидравлически гладких и шероховатых трубах
- •4.5. Движение жидкости в трубах некруглого сечения
- •4.6. Местные гидравлические сопротивления
- •4.7. Зависимость коэффициентов местных сопротивлений от числа Рейнольдса. Эквивалентная длина
- •4.8. Кавитация
- •4.9. Истечение жидкостей из отверстия в тонкой стенке
- •4.10. Зависимость коэффициентов истечения от числа Рейнольдса
- •4.11. Истечение из насадков
- •4.12. Виды насадков
- •4.13. Истечение при переменном напоре и под уровень жидкости
- •Пример применения уравнения Бернулли для расчета расхода через диафрагму
- •Лекция 5. Практическое применение законов гидравлики
- •5.1. Расчет короткого трубопровода
- •5.2. Расчет длинных трубопроводов
- •5.2.1. Понятие о простом и сложном напорных трубопроводах
- •5.2.2. Расчет трубопроводов, соединенных последовательно и параллельно
- •5.2.3. Гидравлический удар
- •5.2.4. Гидравлический таран
- •Пример расчета короткого трубопровода
- •Пример расчета магистрального трубопровода
- •Рекомендуемая литература
- •Дополнительная литература
- •Материально техническое обеспечение дисциплины
- •Требования к уровню знаний студентов
2.2.10. Уравнение Бернулли для элементарной струйки невязкой сжимаемой жидкости
Плотность сжимаемой жидкости изменяется в процессе движения. Проинтегрировав дифференциальное уравнение одномерного движения жидкости для струйки, получаем:
|
|
(2.56) |
При установившемся движении влияние сжимаемости практически проявляется только в газах, при анализе течения которых удельной энергией положения можно пренебречь. Тогда:
|
|
(2.57) |
Это уравнение можно назвать уравнением
Бернулли для сжимаемой жидкости. Член
характеризует
потенциальную энергию газа с учетом
преобразования его внутренней энергии.
Вывод: При установившемся течении невязкого газа сумма удельной потенциальной, внутренней и кинетической энергии есть величина постоянная.
Для вычисления интеграла необходимо знать процесс изменения состояния газа при этом течении. Если считать что течение происходит без теплообмена, то для невязкого газа это будет отвечать изоэнтропическому изменению состояния. Такой процесс описывается уравнением
|
|
(2.58) |
где k – показатель адиабаты процесса; С – постоянная.
Подставим в интеграл
вместо ρ его значение из предыдущего
уравнения
,
тогда
.
Теперь уравнение Бернулли для сжимаемой жидкости принимает вид
.
Поскольку отношение
|
|
(2.59) |
Из этого уравнения следует, что изменение скорости вдоль трубки тока сжимаемого газа связано с изменением температуры. При увеличении скорости температура падает и наоборот.
2.2.11. Уравнение Бернулли для потока вязкой сжимаемой жидкости
При составлении уравнений движения сжимаемой жидкости следует учитывать, что не только скорости, но и плотности, температуры и давления отдельных струек в пределах живых сечений неодинаковы, что значительно усложняет исследование. Поэтому поток конечных размеров рассматривают как одну струйку. Заменив в уравнении для струйки скорость струйки u на среднюю скорость потока ср, можно сразу написать уравнение Бернулли сжимаемой невязкой жидкости:
|
|
(2.60) |
Теперь составим уравнение Бернулли для вязкой сжимаемой жидкости, для чего запишем дифференциальное уравнение движения
интегрирование которого для сжимаемой жидкости зависит от конкретных условий движения и закона изменения состояния газа.
При адиабатическом течении, где отсутствует обмен тепла со средой вне границ потока, можно получить уравнение движения в конечном виде, для чего необходимо применить понятие энтальпии
|
|
(2.61) |
где q – количество тепла, передаваемое 1 кг газа.
Подставив уравнение энтальпии в уравнение Бернулли, получим
При адиабатическом течении энергия, потерянная на трение, переходит во внутреннее тепло (dEn = dq), тогда
Проинтегрировав, получим
|
|
(2.62) |
Мы получили основное уравнение адиабатического течения газа.
Вывод: Сумма удельной кинетической энергии и энтальпии остается неизменной в процессе движения газа.
Можно доказать, что для воздуха сжимаемостью можно пренебречь, если скорость течения не превышает 70 м/с, для природного газа – 90 м/с. В системах вентиляции и газопроводов низкого давления скорости течения не превышают указанных пределов, поэтому расчет в этих системах ведется как для несжимаемой жидкости. В этих системах расчет можно вести по уравнению Бернулли в форме давлений
.