
- •Введение
- •Тема 1. Система электроснабжения лекция 1. Аккумуляторные батареи
- •Общие сведения
- •Требования к стартерным батареям
- •Принцип работы свинцово-кислотного
- •Устройство стартерных батарей
- •Лекция 2. Параметры и эксплуатация стартерных батарей
- •1. Параметры стартерных батарей
- •Характеристики заряда и разряда
- •Эксплуатация стартерных батарей
- •Лекция 3. Генераторные установки
- •1. Общие сведения
- •2. Электрическая схема вентильного генератора
- •3. Конструкция генераторов
- •3.1. Бесконтактные генераторы
- •4. Характеристики генераторных установок
- •Лекция 4. Регуляторы напряжения
- •1. Основы процесса автоматического
- •2. Схемы регуляторов напряжения
- •3. Схемное и конструктивное исполнение
- •4. Схемы генераторных установок
- •Тема 2. Система пуска лекция 5. Устройство и принцип действия стартера
- •1. Общие сведения
- •2. Стартерные электродвигатели
- •3. Конструкция стартеров
- •Лекция 6. Схемы управления электростартерами
- •1. Электромагнитные схемы управления
- •2. Электронные схемы управления стартером
- •3. Общие сведения о системе стоп-старта
- •Лекция 7. Устройства для облегчения пуска двигателей при низких температурах
- •1. Общие сведения
- •2. Свечи накаливания и подогрева воздуха
- •2.1. Свечи накаливания.
- •2.2. Свечи подогрева воздуха во впускном трубопроводе
- •5. Электрические подогреватели
- •6. Предпусковые подогреватели
- •Тема 3. Системы зажигания лекция 8. Классическая система зажигания
- •1. Назначение и принцип действия
- •2. Контактная система зажигания
- •3. Конструкция элементов системы зажигания
- •3.1 Катушки зажигания.
- •3.2. Распределители зажигания
- •3.3. Свечи зажигания
- •Лекция 9. Электронные системы зажигания
- •1. Недостатки классической системы зажигания
- •2. Контактно-транзисторная система зажигания
- •3. Электронные системы зажигания
- •3.1. Датчики углового положения коленчатого вала двс
- •3.2. Бесконтактные системы зажигания с нерегулируемым
- •3.3. Коммутаторы с нормируемым временем
- •3.4. Адаптивные регуляторы времени накопления
- •3.5. Микропроцессорные системы зажигания
- •Тема 4. Электронные системы управления двигателем лекция 10. Системы топливоподачи
- •1. Основные принципы управления двигателем
- •2. Карбюраторы с электронным управлением
- •3. Системы автоматического управления
- •Лекция 11. Электронные системы впрыскивания топлива
- •1. Классификация систем впрыскивания топлива
- •2. Системы распределённого впрыскивания
- •3. Системы центрального впрыскивания
- •4. Комплексные системы управления
- •Лекция 12. Датчики и исполнительные устройства систем управления двигателем
- •1. Датчики электронных систем управления
- •1.1. Измерители расхода воздуха
- •1.2. Датчики давления
- •1.3. Датчики положения и перемещения
- •1.4. Датчики детонации
- •1.5. Датчики кислорода
- •2. Исполнительные устройства систем впрыска
- •2.1. Электромагнитные форсунки
- •2.2. Исполнительные устройства с электродвигателями.
- •Тема 5. Системы освещения и сигнализации лекция 13. Световые приборы
- •1. Назначение и основные параметры
- •2. Международная система обозначений
- •3. Лампы световых приборов
- •4. Конструкция современных головных фар
- •Лекция 14. Приборы световой сигнализации
- •1. Классификация светосигнальных приборов
- •2. Габаритные огни
- •3. Сигналы торможения
- •4. Указатели поворота и их боковые повторители
- •5. Конструкция светосигнальных приборов
- •6. Звуковые сигналы
- •Тема 6. Информационно-измерительная система
- •Лекция 15. Технические средства контроля и диагностирования
- •1. Датчики электрических сигналов
- •1.1. Реостатные датчики
- •1.2. Терморезистивные датчики
- •1.3. Датчики давления
- •1.4. Датчики электронных информационных систем
- •2. Указатели автомобильных измерительных
- •2.1. Магнитоэлектрические указатели
- •2.2. Электромагнитные указатели
- •2.3. Указатели импульсной системы
- •3. Измерительные приборы
- •3.1. Приборы контроля зарядного режима
- •3.2. Спидометры и тахометры
- •3.3. Эконометр
- •3.4. Тахографы
- •Тема 7. Вспомогательное электрооборудование
- •Лекция 16. Электропривод вспомогательного оборудования автомобиля
- •1. Общие сведения об электроприводе
- •2. Электродвигатели
- •2.1. Электродвигатели предпусковых подогревателей
- •2.2. Электродвигатели для привода вентиляционных и
- •2.3. Электродвигатели для привода стеклоочистительных
- •3. Стеклоочистители, фароочистители
- •Заключение
- •Тема 5. Системы освеЩеНия и сигнализации 171
- •Тема 6. Информационно-измерительная
- •Тема 7. Вспомогательное электро –
Требования к стартерным батареям
К стартерным аккумуляторным батареям предъявляются следующие основные требования:
максимальное рабочее напряжение, которое определяется ЭДС одного аккумулятора батареи и их количеством в последовательном соединении;
минимальная общая масса;
минимальное внутреннее сопротивление (особенно при пониженных температурах);
малое изменение напряжения в процессе разряда;
максимальное количество энергии, отдаваемой с единицы массы;
быстрое восстановление емкости в процессе заряда;
малые габариты и большая механическая прочность;
надежность и простота обслуживания в эксплуатации;
малая стоимость при массовом производстве.
Наиболее полно перечисленным требованиям удовлетворяют свинцово-кислотные аккумуляторы. Они получили самое широкое распространение в качестве стартерных для автомобилей.
Принцип работы свинцово-кислотного
АККУМУЛЯТОРА
Свинцовый аккумулятор – это химический источник тока. Он представляет совокупность реагентов (окислителя и восстановителя) и электролита. Восстановитель (отрицательный электрод) в процессе токообразующей реакции отдает электроны и окисляется, а окислитель (положительный электрод) восстанавливается. Восстановителем служит губчатый свинец Рb, а окислителем – двуокись свинца РbО2. Электролит – водный раствор серной кислоты Н2SО4 с массовой концентрацией от 28 до 40 %. Активные вещества электродов представляют собой относительно жесткую пористую электронопроводящую массу. Средний диаметр пор положительного электрода лежит в пределах 1÷2 мкм, а отрицательного – 5÷10 мкм. Объемная пористость активных веществ в заряженном состоянии – около 50%.
Физические процессы, происходящие в аккумуляторе, связаны со свойством электролитического растворения металлов, которое заключается в переходе положительно заряженных ионов металла в раствор. Ионы свинца обладают этим свойством в большей степени, чем ионы других металлов. При погружении губчатого свинца в раствор электролита от свинца начинают отщепляться ионы и переходить в раствор. При этом электрод заряжается отрицательно, а раствор электролита – положительно. Возникающая разность потенциалов ∆φ препятствует выделению ионов из свинца. При определенном значении разности потенциалов ∆φ0 наступает состояние равновесия между силами электролитической упругости растворения, с одной стороны, и силами электростатического поля, – с другой. Растворение свинца прекращается.
При погружении положительного электрода РbО2 в раствор серной кислоты двуокись свинца в ограниченном количестве переходит в раствор, где соединяясь с водой ионизируется на четырехвалентные ионы свинца Рb4+ и одновалентные ионы гидроокисла ОН-. Четырехвалентные ионы свинца осаждаются на электроде и создают положительный потенциал относительно раствора.
При разряде аккумулятора процессы протекают в обратном порядке, т. е. расходуется серная кислота, образуется вода Н2О, а на обоих электродах – сульфат свинца РbSО4. Поэтому измерение плотности или концентрации электролита служит удобным и точным средством определения степени заряженности аккумулятора.
Вместе с образованием воды происходит выделение кислорода и водорода, причем, кислорода – на положительном электроде, а водорода – на отрицательном. Процесс выделения газов определяется разностью между потенциалом электрода и напряжением начала выделения газа (так называемое «перенапряжение газа»). Чем больше «перенапряжение», тем больше интенсивность выделения газа и наоборот. На величину напряжения начала выделения газа значительное влияние оказывают примеси в материалах электродов.