
- •Часть I. Общая микробиология 17
- •Глава 1. Введение в микробиологию
- •Глава 2. Морфология и классификация
- •Глава 3. Физиология микробов 50
- •Глава 4. Экология микробов — микроэкология...82
- •Глава 5. Генетика микробов (м.Н. Бойченко).. 104
- •Глава 6. Биотехнология.
- •Глава 7. Противомикробные препараты
- •Глава 8. Учение об инфекции (а.Ю. Миронов, ю.В. Несвижский, д. Н. Нечаев) 136
- •Часть II. Общая иммунология 183
- •Глава 9. Учение об иммунитете и факторы неспецифической резистентности
- •Глава 10. Антигены и иммунная система
- •Глава 11. Основные формы иммунного реагирования
- •Глава 12. Особенности иммунитета
- •Глава 13. Иммунодиагностические реакции и их применение
- •Глава 14. Иммунопрофилактика
- •Часть III. Частная микробиология.. 310
- •Глава 15 Микробиологическая и иммунологи ческая диагностика (а.Ю Миронов) 310
- •Глава 16. Частная бактериология 327
- •Глава 17. Частная вирусология 520
- •Глава 18. Частная микология 616
- •Глава 19. Частная протозоология
- •Глава 20. Клиническая микробиология
- •Часть I.
- •Глава 1. Введение в микробиологию и иммунологию
- •1.2. Представители мира микробов
- •1.3. Распространенность микробов
- •1.4. Роль микробов в патологии человека
- •1.5. Микробиология — наука о микробах
- •1.6. Иммунология — сущность и задачи
- •1.7. Связь микробиологии с иммунологией
- •1.8. История развития микробиологии и иммунологии
- •1.8.1. Эвристический период
- •1.8.2. Морфологический период
- •1.8.3. Физиологический период
- •1.8.4. Иммунологический период
- •1.8.5. Молекулярно-генетический период
- •1.9. Вклад отечественных ученых в развитие микробиологии и иммунологии
- •1.10. Зачем нужны знания микробиологии и иммунологии врачу
- •Глава 2. Морфология и классификация микробов
- •2.1. Систематика и номенклатура микробов
- •2.2. Классификация и морфология бактерий
- •2.2.1. Формы бактерий
- •2.2.2. Структура бактериальной клетки
- •2.3. Строение и классификация грибов
- •2.4. Строение и классификация простейших
- •2.5. Строение и классификация вирусов
- •Глава 3. Физиология микробов
- •3.1.2. Ферменты бактерий
- •3.1.4 Конструктивный метаболизм
- •3.1.5. Энергетический метаболизм
- •3.1.6. Отношение бактерий к кислороду
- •3.1.8. Условия культивирования бактерий
- •3.2. Особенности физиологии грибов и простейших
- •3.3. Физиология вирусов
- •3.3.1. Репродукция вирусов
- •3.3.3. Интегративный тип взаимодействия вирусов с клеткой (вирогения)
- •3.4. Культивирование вирусов
- •3.5. Бактериофаги (вирусы бактерий)
- •Глава 4. Экология микробов - микроэкология
- •4.1. Распространение микробов в окружающей среде
- •4.1.1. Микрофлора почвы
- •4.1.2. Микрофлора воды
- •4.1.3. Микрофлора воздуха
- •4.1.5. Микрофлора растительного лекарственного сырья, фитопатогенные микробы
- •4.1.6. Микрофлора производственных, бытовых и медицинских объектов
- •4.2. Микрофлора организма человека
- •4.2.1. Значение микрофлоры организма человека
- •4.2.2. Дисбактериоз
- •4.3. Влияние факторов окружающей среды на микробы
- •4.3.1. Влияние физических факторов
- •4.3.2. Влияние химических веществ
- •4.4 Уничтожение микробов в окружающей среде
- •4.4.1. Стерилизация
- •4.4.2. Дезинфекция
- •4.4.3. Асептика и антисептика
- •4.5. Санитарная микробиология
- •4.5.1. Микробиологический контроль почвы, воды, предметов обихода
- •4.5.2. Микробиологический контроль воздуха
- •4.5.3. Микробиологический контроль продуктов питания
- •4.5.4. Микробиологический контроль лекарственных средств
- •Глава 5. Генетика микробов
- •5.1. Строение генома бактерий
- •5.1.2. Плазмиды бактерий
- •5.1.3. Подвижные генетические элементы
- •5.2. Мутации у бактерий
- •5.3. Рекомбинация у бактерий
- •5.3.1. Гомологичная рекомбинация
- •5.3.2. Сайт-специфическая рекомбинация
- •5.4. Передача генетической информации у бактерий
- •5.4.2. Трансдукция
- •5.4.3. Трансформация
- •5.5. Особенности генетики вирусов
- •5.6.1. Рестрикционный анализ
- •5.6.2. Метод молекулярной гибридизации
- •5.6.3. Полимеразная цепная реакция
- •Глава 6. Биотехнология. Генетическая инженерия
- •6Л. Сущность биотехнологии. Цели и задачи
- •6.2. Краткая история развития биотехнологии
- •6.3. Микроорганизмы и процессы, применяемые в биотехнологии
- •6.4. Генетическая инженерия и область ее применения в биотехнологии
- •Глава 7. Противомикробные препараты
- •7.1. Химиотерапевтические препараты
- •7.1.1. Антибиотики
- •7.1.1.1. Источники и способы получения антибиотиков
- •7.2. Механизмы действия противомикроб-ных химиопрепаратов
- •7.3. Осложнения при антимикробной химиотерапии
- •7.4. Лекарственная устойчивость бактерий
- •7.5. Основы рациональной антибиотикотерапии
- •7.6. Противовирусные средства
- •7.7. Антисептические и дезинфицирующие вещества
- •Глава 8. Учение об инфекции
- •8.1. Инфекционный процесс и инфекционная болезнь
- •8.1.2. Стадии и уровни инфекционного процесса
- •8.1.3. Понятие об инфекционной болезни
- •8.2. Свойства микробов — возбудителей инфекционного процесса
- •8.3. Свойства патогенных микробов
- •8.3.1. Факторы патогенности микробов
- •8.3.2. Токсины бактерий
- •8.3.3. Генетическая регуляция факторов патогенности
- •8.4. Влияние факторов окружающей среды на реактивность организма
- •8.4.2. Влияние биологических и социальных факторов окружающей среды на реактивность макроорганизма
- •8.5. Характерные особенности инфекционных болезней
- •8.6. Формы инфекционного процесса
- •8.7. Особенности формирования патоген-ности у вирусов. Формы взаимодействия вирусов с клеткой. Особенности вирусных инфекций
- •8.8. Понятие об эпидемическом процессе
- •8.8.1. Эколого-эпидемиологическая классификация инфекционных болезней
- •ЧаСть II.
- •Глава 9. Учение об иммунитете и факторы неспецифической резистентности
- •9.1. Введение в иммунологию
- •9.1.1. Сущность и роль иммунитета
- •9.1.2. Иммунология как общебиологическая и общемедицинская наука
- •9.1.3. История развития иммунологии
- •9.1.4. Достижения иммунологии в медицине
- •9.1.5. Основные принципы и механизмы функционирования иммунной системы
- •9.1.6. Виды иммунитета
- •9.2. Факторы неспецифической резистентности организма
- •9.2.1. Кожа и слизистые оболочки
- •9.2.2. Физико-химическая защита
- •9.2.3. Иммунобиологическая защита
- •9.2.3.1. Фагоцитоз
- •9.2.3.2. Тромбоциты
- •9.2.3.3. Комплемент
- •9.2.3.4. Лизоцим
- •9.2.3.5. Интерферон
- •9.2.3.6. Защитные белки сыворотки крови
- •Глава 10. Антигены и иммунная система человека
- •10.1.1. Общие представления
- •10.1.2. Свойства антигенов
- •10.1.2.1. Антигенность
- •10.1.2.2. Иммуногенность
- •10.1.2.3. Специфичность
- •10.1.4. Антигены организма человека
- •10.1.4.1. Антигены групп крови человека
- •10.1.4.2. Антигены гистосовместимости
- •10.1.4.3. Опухольассоциированные антигены
- •10.1.4.4. Cd-антигены
- •10.1.5. Антигены микробов
- •10.1.5.1. Антигены бактерий
- •10.1.5.2. Антигены вирусов
- •10.2. Иммунная система человека
- •10.2.1. Структурно-функциональные элементы иммунной системы
- •10.2.1.1. Центральные органы иммунной системы
- •10.2.1.2. Периферические органы иммунной системы
- •10.2.1.3. Клеточные популяции иммунной системы
- •10.2.1.3.1. Лимфоциты
- •10.2.1.3.1.1. В-лимфоциты
- •10.2.1.3.1.2. Т-лимфоциты
- •10.2.1.3.1.2.1. Т-хелперы
- •10.2.1.3.1.2.2. Т-киллеры
- •10.2.1.3.1.2.3. Естественные киллеры
- •10.2.1.3.2. Другие клетки иммунной системы
- •10.2.2. Организация функционирования иммунной ситемы
- •10.2.2.1. Взаимодействие клеток иммунной системы
- •10.2.2.2. Активация иммунной системы
- •10.2.2.3. Супрессия иммунного ответа
- •10.2.2.4. Онтогенез клональной структуры иммунной системы
- •Глава 11. Основные формы иммунного реагирования
- •11.1. Антитела и антителообразование
- •11.1.1. Природа антител
- •11.1.2. Молекулярное строение антител
- •11.1.3. Структурно-функциональные особенности иммуноглобулинов различных классов
- •11.1.5. Механизм взаимодействия антитела с антигеном
- •11.1.6. Свойства антител
- •11.1.7. Генетика иммуноглобулинов
- •11.1.8. Динамика антителопродукции
- •11.1.9. Теории разнообразия антител
- •11.2. Иммунный фагоцитоз
- •11.3. Опосредованный клетками киллинг
- •11.3.1. Антителозависимая клеточно-опосредованная цитотоксичность
- •11.3.2. Антителонезависимая клеточно-опосредованная цитотоксичность
- •11.4. Реакции гиперчувствительности
- •11.5. Иммунологическая память
- •11.6. Иммунологическая толерантность
- •Глава 12. Особенности иммунитета
- •12.1. Особенности местного иммунитета
- •12.2. Особенности иммунитета при различных состояниях
- •12.3. Иммунный статус и его оценка
- •12.4. Патология иммунной системы
- •12.5. Иммунокоррекция
- •Глава 13. Иммунодиагностические реакции и их применение
- •13.1. Реакции антиген—антитело
- •13.2. Реакции агглютинации
- •13.3. Реакции преципитации
- •13.4. Реакции с участием комплемента
- •13.5. Реакция нейтрализации
- •13.6. Реакции с использованием меченых антител или антигенов
- •13.6.2. Иммуноферментный метод, или анализ (ифа)
- •Глава 14. Иммунопрофилактика и иммунотерапия
- •14.1. Сущность и место иммунопрофилактики и иммунотерапии в медицинской практике
- •14.2. Иммунобиологические препараты
- •Часть III
- •Глава 15. Микробиологическая и иммунологическая диагностика
- •15.1. Организация микробиологической и иммунологической лабораторий
- •15.2. Оснащение микробиологической и иммунологической лабораторий
- •15.3. Правила работы
- •15.4. Принципы микробиологической диагностики инфекционных болезней
- •15.5. Методы микробиологической диагностики бактериальных инфекций
- •15.6. Методы микробиологической диагностики вирусных инфекций
- •15.7. Особенности микробиологической диагностики микозов
- •15.9. Принципы иммунологической диагностики болезней человека
- •Глава 16. Частная бактериология
- •16Л. Кокки
- •16.2. Палочки грамотрицательные факультативно-анаэробные
- •16.3.6.5. Ацинетобактер (род Acinetobacter)
- •16.4. Палочки грамотрицательные анаэробные
- •16.5. Палочки спорообразующие грамположительные
- •16.6. Палочки грамположительные правильной формы
- •16.7. Палочки грамположительные неправильной формы, ветвящиеся бактерии
- •16.8. Спирохеты и другие спиральные, изогнутые бактерии
- •16.12. Микоплазмы
- •16.13. Общая характеристика бактериальных зоонозных инфекций
- •Глава 17. Частная вирусология
- •17.3. Медленные вирусные инфекции и прионные болезни
- •17.5. Возбудители вирусных острых кишечных инфекций
- •17.6. Возбудители парентеральных вирусных гепатитов в, d, с, g
- •17.7. Онкогенные вирусы
- •Глава 18. Частная микология
- •18Л. Возбудители поверхностных микозов
- •18.2. Возбудители эпидермофитии
- •18.3. Возбудители подкожных, или субкутанных, микозов
- •18.4. Возбудители системных, или глубоких, микозов
- •18.5. Возбудители оппортунистических микозов
- •18.6. Возбудители микотоксикозов
- •18.7. Неклассифицированные патогенные грибы
- •Глава 19. Частная протозоология
- •19.1. Саркодовые (амебы)
- •19.2. Жгутиконосцы
- •19.3. Споровики
- •19.4. Ресничные
- •19.5. Микроспоридии (тип Microspora)
- •19.6. Бластоцисты (род Blastocystis)
- •Глава 20. Клиническая микробиология
- •20.1. Понятие о внутрибольничной инфекции
- •20.2. Понятие о клинической микробиологии
- •20.3. Этиология вби
- •20.4. Эпидемиология вби
- •20.7. Микробиологическая диагностика вби
- •20.8. Лечение
- •20.9. Профилактика
- •20.10. Диагностика бактериемии и сепсиса
- •20.11. Диагностика инфекций мочевыводящих путей
- •20.12. Диагностика инфекций нижних дыхательных путей
- •20.13. Диагностика инфекций верхних дыхательных путей
- •20.14. Диагностика менингитов
- •20.15. Диагностика воспалительных заболеваний женских половых органов
- •20.16. Диагностика острых кишечных инфекций и пищевых отравлений
- •20.17. Диагностика раневой инфекции
- •20.18. Диагностика воспалений глаз и ушей
- •20.19. Микрофлора полости рта и ее роль в патологии человека
- •20.19.1. Роль микроорганизмов при заболеваниях челюстно-лицевой области
8.3.2. Токсины бактерий
Токсины бактерий — продукты метаболизма, оказывающие непосредственное токсическое воздействие на специфические клетки макроорганизма, либо опосредованно вызывающие развитие симптомов интоксикации в результате индукции ими образования биологически активных веществ.
По физико-химической структуре и биологическим свойствам токсины бактерий делятся на две группы: белковые токсины и эндотоксины.
Белковые бактериальные токсины и их биологические свойства. К данной группе токсинов относятся термолабильные и термостабильные белки, которые образуются как грам-положительными, так и грамотрицательны-ми аэробными и анаэробными бактериями. Обычно это ферменты, которые оказывают губительное воздействие на клетки макроорганизма в исключительно малых концентрациях. Они могут как секретироваться клеткой в окружающую среду, так и находиться с клеткой в связанном состоянии, освобождаясь в процессе автолиза клетки. По степени связи с бактериальной клеткой их подразделяют на три класса:
Класс А — секретируемые во внешнюю среду, например гистотоксин С. diphtheriae.
Класс В — токсины, частично связанные с микробной клеткой и частично секретируемые в окружающую среду. Они находятся в периплазматическом пространстве. Такие токсины называют мезотоксинами, как, например, тетаноспазмин С. tetani или нейро-токсин С. botulinum. Клетка остается жизнеспособной. Они не имеют сигнального пептида, поэтому не секретируются в окружающую среду. Эти токсины попадают в окружающую среду в результате слияния с мембранами клетки и затем выводятся из нее посредством
эксфолиации мембран (син. отслоение, деск-вамация), а не автолиза, как считали ранее.
Класс С — токсины, связанные с микробной клеткой и попадающие в окружающую клетку среду лишь в результате гибели клетки, например Шига-токсин у S. dysenteriae 1 серо-вара и другие Шигаподобные токсины.
Способность бактерий образовывать белковые токсины называется токсигенностью.
По строению белковые токсины делятся на простые и сложные. Простые токсины образуются в виде единой полипептидной цепи или протоксина, неактивного в функциональном отношении, который под действием протеаз самого микроба либо протеаз представителей нормальной микрофлоры, а также протеаз тканей и клеток макроорганизма превращается в активную бифункциональную В—А-струк-туру. Часть В не обладает токсичностью. Это природный токсоид (анатоксин), который, выполняя транспортную функцию, взаимодействует со специфическим рецептором на эукариотической клетке и, образуя канал в цитоплазматической мембране клетки, обусловливает проникновение токсической группы А или активатора в цитоплазму клетки. Как правило, субъединица А обладает ферментативной активностью. Она активна только при наличии субъединицы В, которая обеспечивает специфичность и органотропность действия токсина, а также экранирует ферментативную субъединицу А, предотвращая ее взаимодействие с субстратом как в собственной клетке микроба, так и за ее пределами. Сложные токсины представляют собой уже готовую сложную бифункциональную структуру, состоящую из одной или нескольких В-субъединиц, соединенных с А-субъединицей, как, например холерный энтеротоксин, у которого субъединица А окружена пятью абордажными В-субъединицами. Субъединицы В и А синтезируются в клетке независимо и в последующем соединяются в единый комплекс. Часть В взаимодействует со специфическими рецепторами эукариотических клеток, а часть А под действием протеаз диссоциирует на две субъединицы: А1, или активатор, и А2, которая осуществляет транспорт активатора через цитоплазматическую мембрану клетки-мишени в цитоплазму.
Механизм действия белковых токсинов на
молекулярном уровне состоит из нескольких стадий. Белковые бактериальные токсины относятся к высокомолекулярным соединениям и самостоятельно через клеточные мембраны не проникают — необходима их диссоциация. На первой стадии белковый токсин за счет своих абордажных молекул В фиксируется на поверхности клетки, взаимодействуя со специфическим рецептором ганглиозидной, гликопротеидной или гликолипидной природы, что ведет к образованию комплекса токсин — рецептор клетки. Вторая стадия заключается в активации токсина под действием протеаз по типу ограниченного протеолиза с последующим образованием бифункциональной В—А-структуры. У сложных токсинов роль активации сводится к переводу активаторного фрагмента А из неактивного в активное состояние. Изменение конформационной структуры молекулы токсина ведет к раскрытию у нее каталитического центра и появлению ферментативной активности. Третья стадия заключается в трансмембранной транслокации части А или А1в цитоплазму клетки, где она нарушает жизненно важные биохимические процессы в клетке, действуя на свои мишени, что ведет к гибели клеток. Взаимодействие части В со специфическими рецепторами на поверхности клеток и высокая избирательность катализа совместно и обуславливают специфичность действия белковых бактериальных токсинов.
Знание механизма действия белковых бактериальных токсинов позволяет понять, почему применение антитоксических сывороток не всегда бывает эффективным?
При применении антитоксических сывороток необходимо помнить, что белковый токсин может быть нейтрализован антителами, когда он находится в крови или лимфе, а также на поверхности клетки, так как антитела препятствуют его взаимодействию со специфическими рецепторами и диссоциации комплекса токсин — рецептор на субъединицы и транслокации части А в цитоплазму клетки. Непосредственно через мембрану клетки антитела не проникают и нейтрализовать транс-лоцированную в цитоплазму часть А не могут, что объясняет отсутствие эффекта от серотерапии при несвоевременно начатом лечении.
По механизму действия белковые бактериальные токсины делятся на пять групп: повреждающие клеточные мембраны; ингибиторы синтеза белка; активирующие пути метаболизма, контролируемые вторичными посредниками (мессенджерами); протеазы; суперантигены, активирующие иммунный ответ макроорганизма.
Токсины, повреждающие клеточные мембраны. Токсины данной группы способны повреждать плазматическую мембрану эукарио-тических клеток с помощью ферментативного гидролиза или в результате формирования пор. Такие повреждения вызывают не только лизис клеток, но и способствуют распространению бактерий в макроорганизме. Примером ферментативного гидролиза является действие альфа-токсина С. perfringens, обладающего активностью фосфолипазы С.
Порообразующие токсины формируют трансмембранные поры и нарушают селективный вход и выход ионов через плазматическую мембрану, что ведет к лизису клетки. Эта группа токсинов включает гемолизин Е. coli, лейкотоксин P. haemolitica, аэролизин А. hydrophila, О-перфринголизин С. perfringens, О-листериолизин L. monocytogenes, а также пневмолизин S. pneumoniae, О-стрептолизин S. pyogenes и альфа-токсин S. aureus. Последний можно рассматривать в качестве прототипа олигомеризующих порообразующих цитоток-синов. Бактерии секретируют готовый токсин (протомер), который узнает клетку-мишень по специфическим рецепторам или неспецифически сорбируется в участках плазматической мембраны, содержащих фосфатидилхолин или холестерин. На мембране семь протомер-ных токсинов собираются в пору, формируя грибоподобный гептамер, состоящий из трех доменов. Шляпка и ободочная область альфа-токсина располагаются на плазматической мембране, а ножка служит трансмембранным каналом. Эта пора позволяет маленьким молекулам и ионам совершать двухстороннее движение, что приводит клетку к набуханию и осмотическому лизису. Альфа-токсин обладает цитолитическим действием в отношении различных типов клеток, включая моноциты, лимфоциты, эритроциты, тромбоциты и
эндотелиопиты человека. Образование поры включает каскад вторичных процессов: активацию эндонуклеаз, высвобождение цитоки-нов и других медиаторов воспаления, синтез эйкозаноидов.
Токсины, ингибирующие синтез белка. К данной группе токсинов относятся: гистоток-син С. diphtheriae, экзотоксин А P. aeruginoza, Шига-токсин (Stx-токсин) S. dysenteriae 1 се-ровара и Шигаподобные токсины энтеро-патогенных и энтерогеморрагических Е. coli (Stx-токсины). Субстратом для них служат факторы элонгации и 28S-рибосомальная РНК. Дифтерийный токсин и экзотоксин А псевдомонад являются дифтамид специфическими АДФ-рибозилтрансферазами, рибо-зилирующими фактор элонгации 2, что ведет к его инактивации и подавлению синтеза белка в клетке. Они синтезируются в виде протоксинов.
Stx-токсин и Stx-токсины имеют типичную АВ-структуру. Энзиматическая субъединица А нековалентно связана с 5-ю В-субъединица-ми. После связи пентамера В с эукариотичес-кой клеткой и интернализации, полипептид А расщепляется на энзиматическую часть А1 и фрагмент А2, связанный с В-пентамером. А1 проявляет N-гликозидазную активность. Stx-токсины инактивируют 288-рибосомаль-ную РНК, нарушая ее взаимодействие с ами-ноацил-тРНК, что ведет к подавлению синтеза белка и гибели клетки-мишени. Данные токсины нарушают синтез белка не только в эпителиоцитах, но и в других клетках, индуцируя развитие гемолитического уремического синдрома. Проникая из просвета кишечника, Stx-токсины связываются с рецепторами эндотелиальных клеток капилляров почечных гломерул Gb3, а также других органов. Это приводит к набуханию клеток, сужению просвета сосудов, агрегации тромбоцитов, развитию гемолиза эритроцитов и уремии.
Токсины, активирующие пути метаболизма вторичных мессенджеров. К данной группе относятся: цитотоксический некротизирующий фактор (CNF), термолабильный (LT) и термостабильный (ST) токсины Е. coli; отечный фактор В. anthracis; коклюшный и дермато-некротический (DNT) токсины В. pertussis; токсины А и В С. difficile; холерный энтеро-
токсин и другие токсины. Они влияют на функцию отдельных белков эукариотической клетки, не вызывая ее гибели. С этой целью токсины активируют вторичных посредников, которые усиливают или искажают клеточные реакции на внеклеточные сигналы.
CNF и DNT имеют связывающий и ферментативный домены. Они активируют Rho-субсемейство ГТФ-связывающих белков, участвующих в модификации регуляции актина цитоскелета через дезаминирование. Такая модификация приводит к преобладанию Rho, не способного гидролизовать связанный с ним ГТФ. Пораженные клетки приобретают характерный вид. У них наблюдается «рифление» мембраны, формируется локальное сжатие актиновых нитей, развивается воспаление с формированием некротического очага.
Токсины А и В С. difficile, обладая гли-козилтрансферазной активностью, наоборот, инактивируют Rho ГТФ-связывающие белки. ST-энтеротоксин Е. coli, связываясь с рецептором гуанилатциклазы, приводит к увеличению цГМФ, который обращает в обратную сторону ток электролитов, подавляя абсорбцию ионов натрия и повышая секрецию ионов хлора, что ведет к развитию диареи.
Холерный энтеротоксин (холероген) состоит из пяти В-субъединиц и субъединицы А, которая диссоциирует на А1, обладающую АДФ-рибозилтрансферазной активностью, и А2, связывающую А1 с пентамером В. А1 инактивирует G-белок, регулирующий активность аденилатциклазы клеточных мембран, что ведет к повышению активности последней и увеличению внутриклеточного содержания циклического аденозинмонофосфата (цАМФ), нарушению всасывания ионов натрия, калия и воды. В отличие от ST энтеро-токсина Е. coli, LT-энтеротоксин Е. coli сходен по строению и механизму действия с холерным энтеротоксином. Он и коклюшный токсин обладают АДФ-рибозилтрансферазной активностью. Их мишенью являются G-бел-ки. Они извращают функции клеток, нарушая внутриклеточный гомеостаз по цАМФ.
Протеазы. Примерами данных токсинов являются ботулинический и столбнячный нейротоксины, а также летальный фактор В. anthracis. Ботулотоксин (BoNT) и тетанос-
пазмин (TeNT) относятся к цинк-металлоэн-допротеазам. Это функциональные блокато-ры. Они сходны по структуре, но различаются по путям проникновения в макроорганизм. Ботулотоксин проникает в макроорганизм энтерально при пищевом ботулизме и у новорожденных в виде больших комплексов, включающих нейротоксин и один или несколько белков, которые обеспечивают стабильность токсина в желудочно-кишечном тракте. Тетаноспазмин образуется в ранах вегетативными формами С. tetani, не формируя комплексов с белками. Оба нейротоксина синтезируются в виде крупномолекулярных неактивных полипептидов, активируемых путем протеолитического расщепления. Каждая активная молекула нейротоксинов включает тяжелую цепь, состоящую из домена, необходимого для связывания с клеткой, а также домена, отвечающего за транслокацию, и легкой цепи, обладающей протеазной активностью. Мишенями токсинов в клетках является группа белков, необходимых для стыковки и соединения синаптических пузырьков с пресинаптическими плазматическими мембранами с последующим высвобождением нейромедиаторов. Ботулотоксин связывается с рецепторами на поверхности пресинапти-ческой мембраны двигательных нейронов периферической нервной системы и вызывает протеолиз белков в нейронах. Это приводит к ингибированию секреции ацетилхолина, что препятствует мышечным сокращениям и проявляется развитием вялых параличей периферических нервов.
Тетаноспазмин сначала связывается с рецепторами на пресинаптической мембране мотонейронов, а затем с помощью обратного везикулярного транспорта перемещается в спинной мозг, где может внедриться в тормозящие и вставочные нейроны. Расщепление везикуло-ассоциированного мембранного протеина и синаптобревина в этих нейронах приводит к блокаде секреции ингибиторных нейротрансмиттеров — глицина и гамма-ами-нобутировой кислоты, что вызывает перевозбуждение мотонейронов и ведет к стойким мышечным сокращениям (спастическим параличам). Он является ингибитором инакти-ваторов ацетилхолина.
Данные токсины относятся к супертоксинам, так как имеют максимально возможную для белков молекулярную массу и, соответственно, токсичность. Это самые сильные биологические яды.
Сибиреязвенный токсин относится к наиболее изученным трехсоставным А1-В-А2-токсинам.
Основной мишенью его являются макрофаги, а также подобные им клетки, имеющие к нему высоко аффинные рецепторы. Общая В-субъ-единица токсина, являющаяся протективным антигеном, обеспечивает ферментативным субъединицам единый механизм проникновения в цитозоль клетки, что необходимо для синергидного действия последних. Вначале протективный антиген связывается с высоко аффинными рецепторами эукариотических клеток. Затем под действием фурина — про-теазы клетки-мишени из него образуется активная форма, имеющая молекулярную массу 63 кД (ПА 63), которая, образуя гептамеры, связывающие летальный фактор (А 1) и отечный фактор (А2), участвует в формировании рН ионопроводящих (катионселективных) каналов и транслокации А1 и А2 в цитозоль клетки путем рецепторного эндоцитоза. Летальный фактор — металлопротеаза, мишенью которой служит митогенанактивируемая киназа протеинкиназ. Он оказывает свое действие в течение нескольких минут, перемещаясь из прелизосомного пространства в лизсому через кислотное внутриклеточное окружение. Действие летального фактора проявляется в продуцировании активных форм кислорода в макрофагах и нейтрофилах, что сопровождается увеличением перекисных соединений в макрофагах и деструкции последних (цито-токсическое действие). Отечный фактор биохимически является зависимой от кальция и кальмодулина аденилатциклазой, образуемой микоробами в неактивной форме. Она активируется при внутликлеточном контакте а белком эукариотов — кальмодулином, отсутствующим у бактерий. Ее мишенью является АТФ. Аденила гциклаза индуцирует синтез вторичных мессенджеров. Повышение уровня цАМФ в клетках сопровождается угнетением фагоцитарной функции клеток, нарушением слияния фагосомы с лизосомой, обезвожива-
нием клеток и экскреции источников энергии в результате нарушения проницаемости клеток. Очевидно, цАМФ используется бактериями для подавления многих нормальных функций фагоцитов, что позволяет микробам дольше выживать во внутренней среде макроорганизма. При этом развитие сибиреязвенной инфекции предполагает обязательное совместное участие всех трех компонентов сибиреязвенного токсина.
Активаторы иммунного ответа. К данной группе токсинов относятся: токсин синдрома токсического шока (TSST-1), энтероток-сины и эксфолиативные токсины S. aureus, пирогенные экзотоксины S. pyogenes и ряд токсинов других микробов. Они относятся к суперантигенам (PTSAg) и могут действовать непосредственно на антигенпрезентуюшие клетки иммунной системы (АРС) и Т-лим-фоциты. Их иммуностимулирующий эффект является результатом способности связывать различные участки экспрессированных на поверхности АРС МНС 2 класса снаружи от пептидсвязывающего участка и специфических VP-элементов на Т-клеточном рецепторе. Например, beta-домен стафилококкового TSST-1 связывает аlfa-цепь МНС 2 класса на макрофагах, в то время как А-домен специфически связывается с Vbeta2-элементами рецепторов Т-клеток, что ведет к массивной пролиферации Т-клеток, сопровождающейся образованием большого количества лимфоцитарных (интерлейкин-2, у-интерферон), а также мо-ноцитарных цитокинов (интерлейкин-1, ин-терлейкин-6, а-фактор некроза опухолей). Совместно эти цитокины вызывают развитие гипотензии, высокую температуру и диффузную эритематозную сыпь. Стафилококковый эксфолиативный токсин (син. эксфолиатин, эпидермолитический токсин) разрушает межклеточные контакты (десмосомы) зернистого слоя эпидермиса, что ведет к отслоению (десквамации, эксфолиации) поверхностных слоев эпидермиса и образованию лопающихся пузырей, наполненных серозным или гнойным содержимым.
Бактериальные токсины сходны по структуре и целому ряду других свойств с сигнальными молекулами макроорганизма: гормонами, нейромедиаторами, интерферонами и т. д.
В ходе лиганд-рецепторного взаимодействия с клетками макроорганизма они используют уже готовые структуры, участвующие в нейро-эндокринной сигнализации. Формирование пор тоже не является их уникальным свойством. Можно предположить, что, являясь антиметаболитами сигнальных молекул макроорганизма, они первоначально имитируют их действие, а в последующем оказывают блокирующий эффект.
Универсальность белковых токсинов заключается в их полифункциональности, не ограничивающейся их значением только лишь как факторов патогенности. Образование белковых токсинов играет существенную роль в экологии бактерий, их существованию в природных биоценозах, где они играют роль сигнальных молекул и оказывают токсическое воздействие на эукариотические клетки грибов и простейших. Благодаря сходству строения с бактериоцинами, они оказывают токсическое воздействие и на конкурентов, в том числе представителей нормальной микрофлоры макроорганизма. Обладая ферментативной активностью, они выполняют трофическую функцию жизнеобеспечения самой микробной клетки.
В отличие от эндотоксинов, белковые токсины, помимо химической структуры и специфичности действия, обладают высокой токсичностью. Они вызывают гибель лабораторных животных при введении им всего нескольких микрограммов токсина, тогда как эндотоксины вызывают гибель животных при введении доз, равных сотням микрограмм. Как и вирулентность, сила действия белковых токсинов измеряется величиной летальных доз (LD) — Del, Dlm и LD50. Это полноценные тимуеза-висимые антигены, к ним образуются антитела, нейтрализующие их — антитоксины. При этом фрагменты А и В в антигенном отношении не идентичны. Протективным действием обладают антитела к С-терминальной части фрагмента В, блокирующие прикрепление токсина к специфическому рецептору клетки. Из белковых токсинов можно получить анатоксины, т. е. токсины, лишенные своих токсических свойств, но сохранивших антигенные свойства, что используют при проведении вакцинопрофилактики. Одним из методов
получения анатоксинов является формоловая детоксикация по G. Ramon (1923), приводящая к химической модификации активного центра токсина и обуславливающая жесткость структуры белковой молекулы, препятствующей ее диссоциации. Заболевания, при которых микроорганизм остается в месте входных ворот инфекции, а в основе патогенеза заболевания и его клинических проявлений лежит действие белкового токсина, называются токсинемическими инфекциями (анаэробная раневая инфекция, столбняк, ботулизм, дифтерия). Такое разделение заболеваний имеет важное значение как в плане проведения микробиологической диагностики, так и лечения, поскольку наиболее эффективными препаратами для специфического лечения токсинемических инфекций являются не антибиотики, а своевременно применяемые антитоксические сыворотки, в ряде случаев сочетаемые с введением анатоксинов (пассивно-активная терапия). Использование антибиотиков, которые действуют на бактерии, а не на их токсины, уходит на второй план. В качестве же средств специфической профилактики токсинемических инфекций для создания искусственного активного приобретенного иммунитета необходимо применять анатоксины, а для создания искусственного пассивного приобретенного иммунитета в целях экстренной профилактики токсинемических инфекций необходимо применять антитоксические сыворотки {активно-пассивная профилактика).
Большинство белковых токсинов разрушается пищеварительными ферментами и оказывает свое воздействие только при парентеральном введении. Исключение составляют токсины С. botulinum, энтеротоксины С. perfringens, С. difficile, S. aureus и энтеротоксины грамот -рицательных бактерий, проявляющих свое действие при пероральном поступлении в макроорганизм.
Синтез белковых токсинов кодируется генами, локализованными в хромосоме и сцепленными с генами, участвующими в спорообразовании или входящими в состав профага, а также генами, локализованными в плазмидах. Это tox+ гены, ответственные за токсиген-ность. Активность tox+ генов контролирует-
ся белками-репрессорами микробной клетки. Первоначальной функцией этих генов у сапрофитов был синтез структурных белков фага, компонентов оболочек спор или синтез ферментов, необходимых для усвоения аминокислот. По мере закрепления паразитического образа жизни эти специализированные адаптивные ферменты превратились в яды — белковые токсины.
Способность микроорганизмов образовывать белковые токсины необходимо учитывать также при проведении микробиологической диагностики. При этом необходимо помнить, что все патогенные штаммы данного вида могут продуцировать только один тип токсина по антигенной структуре и механизму действия(С. diphtheriae, С. tetani), разные по антигенной структуре, но одинаковые по механизму действия токсины (С. botulinum). С другой стороны, один и тот же вид микроба может образовывать разные типы белковых токсинов, а также эндотоксины, например диареегенные Е. coli, шигеллы и сальмонеллы, возбудитель холеры.
Эндотоксины и их биологические свойства. Свойство бактерий образовывать токсические вещества, вызывающие симптомы интоксикации, в том числе выделять в окружающую среду при их разрушении эндотоксины, называется токсичностью. Эндотоксины относятся к бактериальным модулинам, обладающим огромным спектром биологической активности, индуцирующим синтез цитокинов и других медиаторов. В отличие от белковых токсинов, эндотоксины термостабильны и образуются грамотрицатель-ными бактериями, выделяясь в окружающую среду только после гибели бактериальной клетки. Это сложные белковолипополисахаридные комплексы, которые в лабораторных условиях можно получить путем экстракции трихло-руксусной кислотой по Буавену (A. Boivin) и Месробяну (L. Mesrobeanu). Полный антиген, антиген Буавена содержит до 10 % белка. Он входит в состав клеточной стенки грамотри-цательных бактерий. Данные комплексы состоят из белка — пептида, обуславливающего иммуногенность комплекса; фосфолипида В, включающего в свой состав фосфатидилхо-лин — основной компонент клеточной стенки бактерий; двухвалентных ионов Са и Mg; ЛПС,
входящего в состав наружной мембраны клеточной стенки грамотрицательных бактерий, который и является собственно эндотоксином, его основным компонентом (липополисахарид-ная фракция полного антигена, без белкового компонента). В наиболее чистом виде ЛПС получают путем водно-фенольной экстракции по Вестфалю (О. Westphal). Карболовая кислота разрушает белки. ЛПС состоит из липида А и собственно полисахарида, в состав которого входит базисная часть — R-ядро, образованное 3-дезокси-D-манно-октулозоновой кислотой и остатками гептоз, а также О-специфичес-ких олигосахаридных цепей, обуславливающих антигенную специфичность ЛПС грамотрицательных бактерий. Липид А и R-ядро полисахарида имеют одинаковое строение у всех грамотрицательных бактерий, за исключением
B. pertussis, В. abortus, В. fragilis, P. aeruginosa,
C. violaceum, R. viridis, R. tenue, у которых они об ладают ярко выраженной индивидуальностью. Синтез отдельных компонентов ЛПС происходит в бактериальной клетке независимо и контроли руется генами, локализованными в хромосоме. Вирулентные бактерии синтезируют полную структуру ЛПС и образуют S-форму микроба, у которой О-специфические цепи составляют 2/3 ЛПС. Бактерии со сниженной вирулентностью не имеют О- специфических цепей и образуют R-формы микроба. Они имеют многочислен ные бреши во внешней мембране, что сопро вождается нарушением ее проницаемости.
За проявления биологической активности эндотоксинов ответственна вся молекула ЛПС, а не отдельные его компоненты. В отличие от белковых токсинов, они не обладают органотропностью и специфичностью действия. Симптомы интоксикации при заболеваниях, вызванных грамотрицательными бактериями, однотипны, и связаны с действием образующихся медиаторов воспаления. В основе действия ЛПС лежит его неспецифическое липид-липидное и специфическое, за счет рецепторов CD14, взаимодействие с мембранными компонентами разных типов клеток: тромбоцитов, гранулоцитов, эритроцитов, лимфоцитов, моноцитов и макрофагов, которые под действием ЛПС выделяют биологически активные вещества. ЛПС запускает в макроорганизме синтез более 20 различ-
ных биологически активных веществ, которые обуславливают патогенез эндотоксикоза и обладают пирогенным действием. Основной точкой его приложения являются макрофаги. Образование больших доз эндотоксина сопровождается угнетением фагоцитоза, явлениями выраженного токсикоза, слабостью, одышкой, диареей, нарушением сердечнососудистой системы, снижением давления, гипогликемией, лейкопенией, сменяющейся лейкоцитозом, агрегацией тромбоцитов, гипотермией. При образовании больших количеств эндотоксина в крови вследствие усиленного разрушения большого количества гра-мотрицательных бактерий возможно развитие эндотоксинового шока. При образовании небольших доз эндотоксина отмечается слабый токсикоз и повышение температуры тела, стимуляция фагоцитоза. ЛПС относится к ти-муснезависимым антигенам и вызывает поли-клональную стимуляцию В-лимфоцитов, активирует систему комплемента по альтернативному пути, является адъювантом. Небольшие дозы эндотоксина, образующиеся постоянно представителями нормальной микрофлоры тела человека в кишечнике, оказывают благоприятное стимулирующее воздействие на клетки иммунной системы макроорганизма, что ведет к повышению неспецифической резистентности макроорганизма, усилению его устойчивости к инфекционным заболеваниям, повышению радиорезистентности и увеличению противоопухолевой активности клеток. В результате поликлональной стимуляции и активации системы комплемента по альтернативному пути макроорганизм находится в постоянной готовности к встрече с самыми разнообразными микробами и может противостоять им до образования специфических факторов защиты. С другой стороны, длительное присутствие поликлонального стимулятора в макроорганизме может вести к включению запретных клонов клеток и развитию аутоиммунных реакций. В ходе иммунного ответа первоначально на введение ЛПС образуются О-антитела, которые не обладают антитоксической активностью. Симптомы интоксикации уменьшаются после образования антител к R-ядру полисахарида и липиду А. Так как они имеют одинаковое строение у
грамотрицательных бактерий, то антитела к ним пытаются применять для лечения септических процессов, вызванных данными микробами. В отличие от белковых токсинов, из эндотоксинов нельзя получить анатоксины.
Изучение антигенной специфичности ЛПС используется при проведении идентификации грамотрицательных бактерий.
Кроме токсинов, в ходе инфекционного процесса в результате размножения микробы образуют целый ряд других токсических продуктов метаболизма, такие как ядовитые амины, холин, нейрин, высшие жирные кислоты и т. д. Одновременно с их действием происходит отравление организма токсическими продуктами распада собственных клеток и тканей, что играет важную роль в развитии интоксикации.
Таким образом, патогенность носит сложный полидетерминантный характер. Основными материальными носителями патогенности микробов являются морфологические структуры клетки, ферменты и токсины. В макроорганизме они оказывают не изолированное, а комплексное воздействие. Например, ней-раминидаза холерного вибриона способствует адгезии возбудителя к эпителиальным клеткам слизистой оболочки тонкого кишечника и взаимодействию его энтеротоксина с ганглиозид-ными рецепторами клеток, а гемо-цитолизин, образуя каналы в мембране клеток, ведет к их осмотическому повреждению и делает адени-латциклазу клеточных мембран более доступной. Показана относительность деления факторов патогенности по их функциям. Один и тот же фактор патогенности может участвовать в различных фазах инфекционного процесса, а в одной и той же фазе могут участвовать различные факторы патогенности. Например, капсулы бактерий способствуют их адгезии, препятствуют фагоцитозу и экранируют компоненты клетки, активирующие комплемент по альтернативному пути. Эндотоксины и ин-вазивные белки грамотрицательных кишечных бактерий не только способствуют их инвазии и развитию симптомов интоксикации, но и защищают бактерии от действия соляной кислоты и ферментов в желудке. В основе действия всех факторов патогенности лежат одни и те же принципиальные закономерности, связанные
со способностью активных биомолекул возбудителя (лигандов) к распознаванию на клетках-мишенях комплементарных структур, связывание с которыми ведет к инициации развития инфекционного процесса, патологические проявления которого связаны с синтезом тех или иных ферментов и токсинов. Факторы патогенности используются микробами не только в макроорганизме, но и при их попадании в окружающую среду с целью колонизации ее объектов и сохранения жизнеспособности в борьбе с конкурентами.