- •Пластическое деформирование, наплавка, напыление и плакирование для восстановления и упрочнения деталей машин
- •Оглавление
- •Предисловие
- •1. Цель и задачи изечаемого курса. История развития теории и практики восстановления быстроизношивающихся деталей оборудования
- •Цель и задачи изучаемого курса
- •1.2. История развития теории и практики восстановления и упрочнения быстроизнашивающихся деталей оборудования
- •2. Условия работы и характер износа деталей оборудования и технологического инструмента. Виды изнашивания
- •2.1. Условия работы и характер износа деталей оборудования и технологического инструмента
- •2.1.1. Причины разрушения деталей
- •2.1.2. Вида внешнего трения, вызывающие отказы деталей по износу
- •2.2. Виды изнашивания
- •2.2.1. Характеристики основных видов изнашивания
- •3.2. Выбор состава и свойств упрочняющих покрытий
- •3.2.1. Виды основного металла
- •3.3. Области применения
- •3.3.1. Строительные машины
- •3.3.2. Землечерпальные суда
- •3.3.3. Металлургическое оборудование
- •3.3.4. Железнодорожный подвижной состав
- •3.3.5. Сосуды высокого давления
- •3.3.6. Прочие изделия
- •4. Современные наплавочные материалы. Материалы для восстановительной и износостойкой наплавки. Коррозионностойкие наплавочные материалы. Характеристика, свойства и области применения
- •4.1. Материалы для восстановительной и износостойкой наплавки
- •4.1.1. Наплавочная проволока сплошного сечения
- •4.1.2. Покрытые электроды для ручной дуговой наплавки
- •4.1.3. Наплавочные ленточные электроды
- •4.1.4. Флюсы
- •4.1.5. Порошковая проволока
- •4.1.6. Карбид вольфрама
- •4.1.7. Прутки для наплавки
- •4.2. Материалы для износостойкой наплавки, классифицируемые по виду структуры наплавленного металла
- •4.2.1. Перлитно-сорбитные материалы
- •4.2.2. Мартенситные материалы
- •4.2.3. Аустенитно-мартенситные материалы
- •4.2.4. Аустенитные материалы
- •4.3. Коррозионно-стойкие наплавочные материалы
- •4.3.1. Коррозионно-стойкая сталь
- •4.3.2. Никель и его сплавы
- •4.3.3. Медь и её сплавы
- •5.1. Основной металл
- •5.2. Свариваемость основного металла
- •5.2.1. Понятие свариваемости
- •5.2.2. Состав и твёрдость наплавленного металла
- •5.2.3. Структурная диаграмма Шеффлера
- •5.2.4. Переход углерода
- •5.3. Роль среды при наплавке
- •5.3.1. Газовая наплавка
- •5.3.2. Дуговая наплавка
- •5.4. Погонная энергия и скорость охлаждения
- •5.5. Режимы наплавки
- •5.5.1. Прокалка наплавочных материалов
- •5.5.2. Обработка поверхности перед наплавкой
- •5.5.3. Предварительный нагрев
- •5.5.4. Газовая наплавка
- •5.5.5. Дуговая наплавка покрытыми электродами.
- •5.5.6. Дуговая наплавка в среде со2
- •5.5.7. Наплавка под флюсом электродной проволокой
- •5.5.8. Наплавка под флюсом ленточным электродом
- •5.6. Доля основного металла в металле наплавки
- •5.6. Термообработка после наплавки
- •5.6.1. Термообработка после износостойкой наплавки
- •5.6.2. Термообработка после коррозионно-стойкой наплавки
- •6.1. Общая характеристика технологии напыления
- •6.1.1. Общие сведения
- •6.1.2. Преимущества технологии напыления
- •6.1.3. Недостатки технологии напыления
- •6.2. Практика напыления
- •6.2.1. Подготовка к напылению
- •6.2.2. Напыление
- •6.2.3. Последующая обработка
- •6.2.4. Чистовая обработка покрытий
- •6.3. Способы напыления, их сущность
- •6.3.1. Газопламенное напыление
- •6.3.2. Детонационное напыление
- •6.3.3. Дуговая металлизация
- •6.3.4. Плазменное напыление
- •6.3.5. Электроимпульсное нанесение покрытий
- •6.3.6. Нанесение металлических покрытий методом плакирования гибким инструментом
- •6.3.7. Нанесение металлических покрытий методом дробного плакирования гибким инструментом
- •6.4. Напыляемые материалы
- •6.4.1. Напыляемые материалы в виде проволоки
- •6.4.2. Прутковые напыляемые материалы
- •6.4.3. Порошковые напыляемые материалы
- •6.5. Прочность сцепления покрытия с основным материалом и между собой
- •6.6. Пористость и плотность покрытия
- •6.7. Термообработка после нанесения покрытия
- •6.7.1. Термообработка
- •6.7.2. Диффузионная обработка
- •6.7.3. Оплавление напылённых покрытий из самофлюсующихся сплавов
- •7. Технология восстановления и упрочнения наплавкой и напылением деталей металлургического и горнорудного оборудования
- •7.1. Наплавка
- •7.1.1. Наплавка молотков молотковых дробилок
- •7.1.2. Наплавка валков коксовых дробилок аглофабрик
- •7.1.3. Наплавка колосников грохотов дробилок агломерата
- •7.1.4. Наплавка зубьев звёздочек привода агломерационной машины
- •7.1.5. Наплавка деталей загрузочных устройств доменных печей
- •7.1.6. Упрочнение быстроизнашивающихся поверхностей
- •7.1.7. Наплавка буров для вскрытия чугунных лёток доменных печей
- •7.1.8. Наплавка цапф металлургических ковшей
- •7.1.9. Наплавка плунжеров пакетировочных прессов
- •7.1.10. Наплавка хоботов завалочных машин
- •7.1.11. Наплавка кернов клещевых кранов
- •7.1.12. Наплавка подпятника домкратной тележки
- •7.1.13. Наплавка прокатных валков
- •7.1.14. Износостойкая автоматическая наплавка прокатных валков
- •7.1.15. Электрошлаковая наплавка валков
- •7.1.16. Наплавка валков профилегибочных станов
- •7.1.17. Наплавка роликов рольгангов
- •7.1.18. Наплавка роликов листоправильных машин
- •7.1.19. Наплавка ножей ножниц блюминга
- •7.2. Плазменное напыление
- •7.2.1. Напыление калибров
- •7.2.2. Напыление матриц для горячего прессования тугоплавких металлов
- •7.2.3. Напыление пуансонов и направляющих роликов
- •8.1. Формирование упрочнённого слоя деталей методом ппд
- •8.1.1. Обкатка роликами и шариками
- •8.1.2. Зона деформирования при ппд
- •8.2. Остаточные напряжения и связь состояния поверхности с эксплуатационными свойствами деталей
- •8.2.1. Влияние обкатки на износ деталей
- •8.2.2. Влияние ппд на характеристики усталостной прочности
- •9. Оборудование и технология для ппд (обкатывание, выглаживание, ультразвуковая обработка, чеканка, упрочнение проволочным инструментом, обработка дробь и др.)
- •9.1. Приспособления для обкатки роликами и шариками
- •9.2. Алмазные выглаживатели
- •9.3. Отделочно-упрочняющая обработка
- •9.4. Чеканка
- •9.4.1. Чеканочные устройства
- •9.4.2. Многобойковое чеканное устройство
- •9.5. Дробеструйный наклёп
- •9.5.1. Дробемётные установки
- •9.6. Упрочнение энергией взрыва
- •10. Дефекты наплавок и напыления. Причины образования и методы их обнаружения
- •10.1. Дефекты наплавки и меры их предотвращения
- •10.1.1. Трещины
- •10.1.2. Поры
- •10.1.3. Подрезы
- •10.1.4. Шлаковые включения
- •10.1.5. Непровар
- •10.1.6. Несплавления
- •10.1.7. Наплывы и натёки
- •10.1.8. Прожог
- •10.1.9. Пористость и ноздреватость
- •10.1.10. Кратеры
- •10.1.11. Деформации и коробления наплавленных изделий
- •10.2. Методы контроля наплавленных деталей
- •10.2.1. Металлографические методы контроля
- •10.2.2. Контроль твёрдости наплавленного металла
- •10.2.3. Контроль химического состава наплавленного металла
- •10.2.4. Просвечивание металла рентгеновскими и гамма-лучами
- •10.2.5. Контроль при помощи ультразвука
- •10.2.6. Магнитная дефектоскопия наплавленных деталей
- •10.2.7. Люминесцентный метод контроля
- •10.2.8. Метод окрашивания
- •10.3. Дефекты покрытия и меры их предотвращения
- •10.4. Свойства напылённых покрытий и их испытания
- •10.4.1. Испытания на прочность сцепления
- •10.4.2. Износостойкость и фрикционные свойства напылённых покрытий
- •10.4.3. Жаростойкие и теплоизоляционные характеристики покрытий
- •Заключение
- •Вопросы самоконтроля для студентов
- •Библиографический список
3.2. Выбор состава и свойств упрочняющих покрытий
3.2.1. Виды основного металла
Наплавке подвергают основной металл самых разнообразных классов и видов, включая стали углеродистую, низколегированную, литую, высокомарганцовистую аустенитную, коррозионностойкую и др.
Углеродистая и низколегированная стали обладают вполне удовлетворительной пластичностью и вязкостью, однако высокий уровень их углеродного эквивалента требует применения при наплавке предварительного подогрева как средства предотвращения образования в них трещин.
Высокомарганцовистая аустенитная сталь содержит 0,9…1,3% С и 11…14% Mn. Низкая теплопроводность этой стали и высокий коэффициент линейного расширения (в 1,5 раза больше, чем для низкоуглеродистой стали) создают опасность растрескивания при наплавке.
При большом разнообразии составов коррозионностойкой стали по структурному признаку её можно разделить на пять групп: аустенитная, мартенситная, ферритная, аустенитно-ферритная, дисперсионно-упрочняемая.
Аустенитная коррозионно-стойкая сталь обладает высокими сварочно-технологическими свойствами, однако она склонна к деформации при сварке, поскольку её коэффициент линейного расширения в 1,5 раза больше, а теплопроводность в три раза меньше, чем для низкоуглеродистой стали. Для предотвращения охрупчивания при наплавке рекомендуется снижать температуру её предварительного подогрева и разогрева (между проходами).
Мартенситная коррозионно-стойкая сталь, обладая закаливаемостью, отличается низкой свариваемостью; при высоком содержании углерода сварка этой стали становится невозможной из-за интенсивного растрескивания.
Ферритная коррозионно-стойкая сталь, не склонная к закалке при охлаждении на воздухе, может подвергаться сварке. Но из-за склонности к охрупчиванию по причине укрупнения кристаллического зерна при температуре выше 900оС при наплавке этой стали происходит охрупчивание зоны термического влияния, которое, однако, можно предотвратить путём предварительного подогрева (100…200оС) и ограничения погонной энергии. Во время длительной выдержки при температуре 400…500оС эта сталь подвержена охрупчиванию (при 475оС), что выражается в значительном снижении относительного удлинения металла при нормальной температуре.
3.3. Области применения
3.3.1. Строительные машины
Наплавку применяют с целью повышения износостойкости различных деталей строительных машин, в частности при ремонте бульдозеров и одноковшовых экскаваторов для восстановления изношенных деталей.
Рабочие органы и другие детали этих машин работают в условиях интенсивного износа при контактировании с грунтом или скальными породами. К числу деталей, подвергаемых восстановлению наплавкой, относятся режущие кромки бульдозерных отвалов, зубья ковшов экскаватора и детали ходовой части (катки, траки, ленивцы, звёздочки, башмаки и др.).
При работе в контакте с песком повышение твёрдости материала сопровождается линейным снижением относительного износа. Вместе с тем при работе в условиях умеренного и сильного изнашивания (гравий, щебень) повышение твёрдости до HV 400…500 сопровождается заметным снижением износа, но при дальнейшем её повышении относительный износ почти не изменяется.
Катки, траки, ленивцы и другие детали гусеничной ходовой части подвергают обычно автоматической наплавке под флюсом или в среде углекислого газа, обеспечивающей высокопроизводительное нанесение ровного слоя износостойкого сплава на рабочие поверхности деталей.
Таблица 3.2
Режимы автоматической наплавки под флюсом износостойких покрытий
Детали |
Iд, А |
Uд, В |
Температура, оС |
Средняя толщина наплавки, мм |
Число слоёв |
|
Подогрев |
Металл наплавки |
|||||
Катки |
325… 350 |
28 |
250 |
200… 250 |
6 |
3 |
Ленивцы |
325… 350 |
28 |
250 |
200… 250 |
7 |
3 |
Траки |
350… 375 |
30 |
200 |
150… 200 |
4 |
2 |
Зубья и ведущие звёздочки подвергают ручной или полуавтоматической наплавке.
