- •Пластическое деформирование, наплавка, напыление и плакирование для восстановления и упрочнения деталей машин
- •Оглавление
- •Предисловие
- •1. Цель и задачи изечаемого курса. История развития теории и практики восстановления быстроизношивающихся деталей оборудования
- •Цель и задачи изучаемого курса
- •1.2. История развития теории и практики восстановления и упрочнения быстроизнашивающихся деталей оборудования
- •2. Условия работы и характер износа деталей оборудования и технологического инструмента. Виды изнашивания
- •2.1. Условия работы и характер износа деталей оборудования и технологического инструмента
- •2.1.1. Причины разрушения деталей
- •2.1.2. Вида внешнего трения, вызывающие отказы деталей по износу
- •2.2. Виды изнашивания
- •2.2.1. Характеристики основных видов изнашивания
- •3.2. Выбор состава и свойств упрочняющих покрытий
- •3.2.1. Виды основного металла
- •3.3. Области применения
- •3.3.1. Строительные машины
- •3.3.2. Землечерпальные суда
- •3.3.3. Металлургическое оборудование
- •3.3.4. Железнодорожный подвижной состав
- •3.3.5. Сосуды высокого давления
- •3.3.6. Прочие изделия
- •4. Современные наплавочные материалы. Материалы для восстановительной и износостойкой наплавки. Коррозионностойкие наплавочные материалы. Характеристика, свойства и области применения
- •4.1. Материалы для восстановительной и износостойкой наплавки
- •4.1.1. Наплавочная проволока сплошного сечения
- •4.1.2. Покрытые электроды для ручной дуговой наплавки
- •4.1.3. Наплавочные ленточные электроды
- •4.1.4. Флюсы
- •4.1.5. Порошковая проволока
- •4.1.6. Карбид вольфрама
- •4.1.7. Прутки для наплавки
- •4.2. Материалы для износостойкой наплавки, классифицируемые по виду структуры наплавленного металла
- •4.2.1. Перлитно-сорбитные материалы
- •4.2.2. Мартенситные материалы
- •4.2.3. Аустенитно-мартенситные материалы
- •4.2.4. Аустенитные материалы
- •4.3. Коррозионно-стойкие наплавочные материалы
- •4.3.1. Коррозионно-стойкая сталь
- •4.3.2. Никель и его сплавы
- •4.3.3. Медь и её сплавы
- •5.1. Основной металл
- •5.2. Свариваемость основного металла
- •5.2.1. Понятие свариваемости
- •5.2.2. Состав и твёрдость наплавленного металла
- •5.2.3. Структурная диаграмма Шеффлера
- •5.2.4. Переход углерода
- •5.3. Роль среды при наплавке
- •5.3.1. Газовая наплавка
- •5.3.2. Дуговая наплавка
- •5.4. Погонная энергия и скорость охлаждения
- •5.5. Режимы наплавки
- •5.5.1. Прокалка наплавочных материалов
- •5.5.2. Обработка поверхности перед наплавкой
- •5.5.3. Предварительный нагрев
- •5.5.4. Газовая наплавка
- •5.5.5. Дуговая наплавка покрытыми электродами.
- •5.5.6. Дуговая наплавка в среде со2
- •5.5.7. Наплавка под флюсом электродной проволокой
- •5.5.8. Наплавка под флюсом ленточным электродом
- •5.6. Доля основного металла в металле наплавки
- •5.6. Термообработка после наплавки
- •5.6.1. Термообработка после износостойкой наплавки
- •5.6.2. Термообработка после коррозионно-стойкой наплавки
- •6.1. Общая характеристика технологии напыления
- •6.1.1. Общие сведения
- •6.1.2. Преимущества технологии напыления
- •6.1.3. Недостатки технологии напыления
- •6.2. Практика напыления
- •6.2.1. Подготовка к напылению
- •6.2.2. Напыление
- •6.2.3. Последующая обработка
- •6.2.4. Чистовая обработка покрытий
- •6.3. Способы напыления, их сущность
- •6.3.1. Газопламенное напыление
- •6.3.2. Детонационное напыление
- •6.3.3. Дуговая металлизация
- •6.3.4. Плазменное напыление
- •6.3.5. Электроимпульсное нанесение покрытий
- •6.3.6. Нанесение металлических покрытий методом плакирования гибким инструментом
- •6.3.7. Нанесение металлических покрытий методом дробного плакирования гибким инструментом
- •6.4. Напыляемые материалы
- •6.4.1. Напыляемые материалы в виде проволоки
- •6.4.2. Прутковые напыляемые материалы
- •6.4.3. Порошковые напыляемые материалы
- •6.5. Прочность сцепления покрытия с основным материалом и между собой
- •6.6. Пористость и плотность покрытия
- •6.7. Термообработка после нанесения покрытия
- •6.7.1. Термообработка
- •6.7.2. Диффузионная обработка
- •6.7.3. Оплавление напылённых покрытий из самофлюсующихся сплавов
- •7. Технология восстановления и упрочнения наплавкой и напылением деталей металлургического и горнорудного оборудования
- •7.1. Наплавка
- •7.1.1. Наплавка молотков молотковых дробилок
- •7.1.2. Наплавка валков коксовых дробилок аглофабрик
- •7.1.3. Наплавка колосников грохотов дробилок агломерата
- •7.1.4. Наплавка зубьев звёздочек привода агломерационной машины
- •7.1.5. Наплавка деталей загрузочных устройств доменных печей
- •7.1.6. Упрочнение быстроизнашивающихся поверхностей
- •7.1.7. Наплавка буров для вскрытия чугунных лёток доменных печей
- •7.1.8. Наплавка цапф металлургических ковшей
- •7.1.9. Наплавка плунжеров пакетировочных прессов
- •7.1.10. Наплавка хоботов завалочных машин
- •7.1.11. Наплавка кернов клещевых кранов
- •7.1.12. Наплавка подпятника домкратной тележки
- •7.1.13. Наплавка прокатных валков
- •7.1.14. Износостойкая автоматическая наплавка прокатных валков
- •7.1.15. Электрошлаковая наплавка валков
- •7.1.16. Наплавка валков профилегибочных станов
- •7.1.17. Наплавка роликов рольгангов
- •7.1.18. Наплавка роликов листоправильных машин
- •7.1.19. Наплавка ножей ножниц блюминга
- •7.2. Плазменное напыление
- •7.2.1. Напыление калибров
- •7.2.2. Напыление матриц для горячего прессования тугоплавких металлов
- •7.2.3. Напыление пуансонов и направляющих роликов
- •8.1. Формирование упрочнённого слоя деталей методом ппд
- •8.1.1. Обкатка роликами и шариками
- •8.1.2. Зона деформирования при ппд
- •8.2. Остаточные напряжения и связь состояния поверхности с эксплуатационными свойствами деталей
- •8.2.1. Влияние обкатки на износ деталей
- •8.2.2. Влияние ппд на характеристики усталостной прочности
- •9. Оборудование и технология для ппд (обкатывание, выглаживание, ультразвуковая обработка, чеканка, упрочнение проволочным инструментом, обработка дробь и др.)
- •9.1. Приспособления для обкатки роликами и шариками
- •9.2. Алмазные выглаживатели
- •9.3. Отделочно-упрочняющая обработка
- •9.4. Чеканка
- •9.4.1. Чеканочные устройства
- •9.4.2. Многобойковое чеканное устройство
- •9.5. Дробеструйный наклёп
- •9.5.1. Дробемётные установки
- •9.6. Упрочнение энергией взрыва
- •10. Дефекты наплавок и напыления. Причины образования и методы их обнаружения
- •10.1. Дефекты наплавки и меры их предотвращения
- •10.1.1. Трещины
- •10.1.2. Поры
- •10.1.3. Подрезы
- •10.1.4. Шлаковые включения
- •10.1.5. Непровар
- •10.1.6. Несплавления
- •10.1.7. Наплывы и натёки
- •10.1.8. Прожог
- •10.1.9. Пористость и ноздреватость
- •10.1.10. Кратеры
- •10.1.11. Деформации и коробления наплавленных изделий
- •10.2. Методы контроля наплавленных деталей
- •10.2.1. Металлографические методы контроля
- •10.2.2. Контроль твёрдости наплавленного металла
- •10.2.3. Контроль химического состава наплавленного металла
- •10.2.4. Просвечивание металла рентгеновскими и гамма-лучами
- •10.2.5. Контроль при помощи ультразвука
- •10.2.6. Магнитная дефектоскопия наплавленных деталей
- •10.2.7. Люминесцентный метод контроля
- •10.2.8. Метод окрашивания
- •10.3. Дефекты покрытия и меры их предотвращения
- •10.4. Свойства напылённых покрытий и их испытания
- •10.4.1. Испытания на прочность сцепления
- •10.4.2. Износостойкость и фрикционные свойства напылённых покрытий
- •10.4.3. Жаростойкие и теплоизоляционные характеристики покрытий
- •Заключение
- •Вопросы самоконтроля для студентов
- •Библиографический список
8.1.2. Зона деформирования при ппд
Поверхностный слой детали, упрочнённой обкаткой роликом, находится в напряжённом состоянии вследствие возникновения внутренних напряжений в результате того, что не во всём объёме металла происходит одна и та же деформация. В наружных слоях происходит пластическая деформация, а во внутренних – упругая деформация. Упруго деформированная зона металла стремится вернуть своё прежнее состояние, однако этому препятствует наружный пластически деформированный слой. В результате взаимодействия этих слоёв возникают значительные внутренние напряжения сжатия и растяжения.
Разрушение детали может начинаться с верхнего слоя или быть подслойным. В последнем случае основную роль будут играть глубина наклёпанного слоя и распределение остаточных напряжений в зоне перехода от слоя к неупрочнённой сердцевине. Эффект упрочнения растёт с увеличением глубины слоя, а также глубины проникновения остаточных сжимающих напряжений под поверхностью. При дальнейшем увеличении глубины упрочнённого слоя, не сопровождающимся увеличением твёрдости поверхности, разрушение из подслойного может перейти на поверхность. В этом случае дальнейшее увеличение глубины слоя не будет приводить к повышению эффекта упрочнения, и основную роль будут играть твёрдость и величина остаточных напряжений на поверхности.
При установлении режимов упрочнения деталей ППД за критерий предельной степени деформации часто принимают параметры отпечатка, полученного в результате статического внедрения деформирующего элемента в поверхность детали. При этом исходят из условия физического подобия между процессами статического вдавливания и упрочнения ППД, отличающегося наличием относительного тангенциального перемещения контактирующих поверхностей. Между тем в этих условиях основным показателем достижения предельной степени деформации является не общий уровень внедрения деформирующего элемента в обрабатываемую поверхность, а соотношение параметров hs/h (рис.8.2), где hs – высота осевой волны, h – глубина внедрения деформирующего элемента относительно исходной поверхности детали. Именно эти параметры предопределяют интенсивность и характер перераспределения по глубине упругопластических и упругих сдвиговых деформаций в поверхностном слое, являющихся основными факторами, с которыми связан процесс формирования остаточных макронапряжений.
Рис. 8.2. Схема области деформации в процессе накатывания
Как видно из типичной формы пластической деформации в осевом сечении для установившегося периода накатывания (рис. 8.2), помимо контактной зоны (a1+a2) пластическая деформация распространяется на внеконтактные поверхности (l1, l2), примыкающие к контактным поверхностям. Первая зона разделена нейтральной плоскостью I – I, наклонённой под углом φ к поверхностной оси инструмента, на участке a1 и a2. При переходе деформируемого сечения от одного участка к другому изменяется направление течения материала поверхностного слоя. Слева от сечения I – I он смещается в направлении движения подачи S (первичная деформация), а справа – противоположно этому направлению (вторичная деформация).
В результате вытеснения и сдвига материала из зоны a1 формируется волна высотой hs и передняя внеконтактная зона деформации l1, приподнимающаяся за счёт выпучивания относительно исходной поверхности А. В противоположность этому вторичные зоны деформации (a2, l2) первоначально опущены относительно обработанной поверхности D на h1 и h2 соответственно. При вторичном сдвиге и выпучивании материала поверхностного слоя последние зоны приподнимаются, что приводит к постепенному выравниванию до уровня обработанной поверхности. Таким образом, за период прохождения от точки D до точки А каждая частица материала испытывает разнородную и многократную деформацию в связи с тем, что значение S, как правило, более чем на порядок меньше общей длины области деформации. При этом за каждый оборот в область деформации вовлекается новый участок и заканчивается формообразование очередного участка обработанной поверхности.
По мере увеличения усилия упрочнения Р высота hs волны увеличивается быстрее, чем глубина h внедрения. Обусловлено это ростом уровня сдвиговой деформации и интенсификацией накопления материала в зоне волны. При увеличении соотношения hs/h дополнительные затраты работы концентрируются в основном на деформации материала, сосредоточенного в зоне волны. Это, с одной стороны, приводит к снижению интенсивности и темпа прироста глубины распространения упругопластических деформаций, а с другой может вызвать чрезмерную интенсификацию вторичных деформаций и неблагоприятное перераспределение остаточных макронапряжений с соответствующим снижением эффективности упрочнения деталей машин.
В общем виде отношение hs/h характеризует накопленную величину обжатия деформируемого материала в зоне контакта и соотношение площадей зон волны hs и углубления h, показывающего уровень избыточного материала в составе волны. Условия сдвига избыточного материала в сочетании со степенью его деформации предопределяют качественные показатели поверхностного слоя.
На значение отношения hs/h оказывают содействие многочисленные факторы процесса упрочнения, которые можно объединить в три группы. Первая из них включает режимные параметры процесса упрочнения: усилие Р, взаимосвязанное с размерами, формой и положением оси деформирующего элемента относительно обрабатываемой поверхности, а также подачу, скорость обработки и др. Вторая группа отражает влияние на параметры области деформации свойств материала детали и инструмента: исходные физико-механические и адгезионные свойства, их изменение в период обработки. Третья группа включает факторы, предопределяющие условия трения в зоне локального контакта: кинематические условия взаимодействия контактирующих тел, исходное и преобразованное в период обработки состояние контактирующих поверхностей.
