Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по химии..docx
Скачиваний:
0
Добавлен:
03.01.2020
Размер:
653.08 Кб
Скачать

Химические свойства карбоновых кислот.

Карбоновые кислоты содержат сильно полярную связь между атомами кислорода и водорода в гидроксильной группе, которая еще больше поляризуется под влиянием атома кислорода, входящего в состав карбонильной группы.

1). В водном растворе карбоновые кислоты обратимо диссоциируют:

RCOOH   RCOO- + Н+

Лакмус в растворе карбоновых кислот приобретает красный цвет.

Карбоновые кислоты — слабые, поэтому сильные минеральные кислоты вытесняют их из соответствующих солей.

2). Реагируют с

- активными металлами

2RCOOH + Mg → (RCOO)2 Mg+Н2

- основными оксидами

2RCOOH + СаО → (RCOO)2 Са+Н2О

- основаниями

RCOOH + NаОH → RCOONа+Н2О

- солями слабых кислот

RCOOH + NаHCО3 → RCOONа+Н2О+CО2

3). Взаимодействуют со спиртами: 

4).При действии галогенов на свету образуются галогензамещенные кислоты : hν  СH3-CH2-COOH + Br2 → CH3-CHBr-COOH + HBr.

Билет№10.

№1.Кислоты. Классификация, химические свойства.

Кислотами называются сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.

По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H2SOсерная кислота, H2SOсернистая кислота, HNOазотная кислота, H3PO4фосфорная кислота, H2COугольная кислота, H2SiOкремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H2S сероводородная кислота).

В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н). Например, азотная кислота HNO3 одноосновная, так как в молекуле её один атом водорода, серная кислота H2SOдвухосновная и т.д.

 

К И С Л О Т Ы

 

 Одноосновные

 Двухосновные

 Трехосновные

 HNOазотная

 HF фтороводородная

 HCl хлороводородная

 HBr бромоводородная

 HI иодоводородная

 H2SOсерная

 H2SO3 сернистая

 H2S сероводородная

 H2COугольная

 H2SiO3 кремниевая

 H3PO4 фосфорная

Неорганических соединений, содержащих четыре атома водорода, способных замещаться на металл, очень мало.

Часть молекулы кислоты без водорода называется кислотным остатком.

Кислотные остатки могут состоять из одного атома  (-Cl, -Br, -I) – это простые кислотные остатки, а могут – из группы атомов (-SO3, -PO4, -SiO3) – это сложные остатки.

В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:

H2SO+ CuCl2  → CuSO+ 2 HCl↑

Слово ангидрид означает безводный, то есть кислота без воды. Например,

H2SO– H2O → SO3. Бескислородные кислоты ангидридов не имеют.

Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H2SO– серная; H2SO– угольная; H2SiO– кремниевая  и т.д.

Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO  азотная, HNO– азотистая.

Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:

H2 + Cl2 → 2 HCl;

H+ S → H2S.

Растворы полученных газообразных веществ HCl  и H2S и являются кислотами.

При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.

Химические свойства кислот

Растворыв кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются  в воде. Специальные вещества – индикаторы позволяют определить присутствие кислоты.

Индикаторы – это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами. В нейтральных растворах — они имеют одну окраску, в растворах оснований – другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус – тоже в красный цвет.

Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):

H2SO+ Ca(OH)2  → CaSO+ 2 H2O.

Взаимодействуют с основанными оксидами с образованием воды и соли (реакция нейтрализации). Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:

H3PO+ Fe2O→ 2 FePO+ 3 H2O.

Взаимодействуют с металлами. Для взаимодействия кислот с металлами должны выполнятся некоторые условия:

1. металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;

2. кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H+).

При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):

Zn + 2HCl → ZnCl+ H2↑;

Cu + 4HNO3 → CuNO+ 2 NO2  + 2 H2O.

№2. Предельные углеводороды-алканы. Гомологический ряд, изомерия, номенклатура, химические свойства.

Предельные углеводороды-алканы. Гомологический ряд, изомерия, номенлатура, хим.свойства.

Алканы (парафины) – алифатические (нециклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями в неразветвленные или разветвленные цепи. Алканы имеют общую формулу CnH2n+2, где n – число атомов углерода.

Номенклатура

Общее (родовое) название предельных углеводородов — алканы Названия первых четырех членов гомологического ряда метана тривиальные: метан, этан, пропан, бутан. Начиная с пятого названия образованы от греческих числительных с добавлением суффикса ан (этим подчеркивается сходство всех предельных углеводородов с родоначальником этого ряда — метаном). Для простейших углеводородов изостроения сохраняются их несистематические названия: изобутан, изопентан, неопентад.

По рациональной номенклатуре алканы рассматривают как производные простейшего углеводорода — метана, в молекуле которого один или несколько водородных атомов замещены на радикалы. Эти заместители (радикалы) называют по старшинству (от менее сложных к более сложным). Если эти заместители одинаковые, то указывают их количество. В основу названия включают слово "метан":

    CH3 | H3C—C—CH3 |    CH3

                              C2H5                                   |

H3C—CH—CH—CH3         |             CH3

тетраметилметан  (2,2-диметилпропан)

метилэтилизопропилметан (2,3-диметилпентан)

Свою номенклатуру имеют и радикалы (углеводородные радикалы). Одновалентные радикалы называют алкилами и обозначают буквой R или Alk.  Их общая формула CnH2n+ 1 .  Названия радикалов составляют из названий соответствующих углеводородов заменой суффикса -ан на суффикс -ил (метан — метил, этан — этил, пропан — пропил и т.д.).  Двухвалентные радикалы называют, заменяя суффикс -ан на -илиден (исключение - радикал метилен ==СН2).  Трехвалентные радикалы имеют суффикс -илидин (исключение - радикал метин ==СН).

В таблице 1 приведены названия первых пяти углеводородов, их радикалов, возможных изомеров и соответствующие им формулы.

Таблица 1.

Формула

Название

углеводорода

радикала

углеводорода

радикала

 

 

метан

метил

 

 

этан

этил

 

 

пропан

пропил изопропил

 

 

н-бутан метилпропан (изо-бутан)

н-бутил метилпропил  (изо-бутил) трет-бутил

 

 

н-пентан

н-пентил

 

метилбутан (изопентан)

метилбутил (изопентил)

 

 

диметилпропан (неопентан)

диметилпропил (неопентил)

Изомерия  Изомеры – это вещества, имеющие одинаковый состав и одну и ту же молекулярную формулу и массу, но различное химическое строение, а потому обладающие различными физическими и химическими свойствами.

Структурная изомерия

Причиной проявления структурной изомерии в ряду алканов является способность атомов углерода образовывать цепи различного строения. Этот вид структурной изомерии называется изомерией углеродного скелета.

Структурные изомеры имеют одинаковый состав, но различаются химическим строением, при этом химические свойства изомеров - сходны, а физические - различны. Алканы с разветвленным строением из-за менее плотной упаковки молекул и, соответственно, меньших межмолекулярных взаимодействий, кипят при более низкой температуре, чем их неразветвленные изомеры.

В молекулах метана СН4, этана С2Н6 и пропана С3Н8 может быть только один порядок соединения атомов, то есть первые три члена гомологического ряда алканов изомеров не имеют. Для бутана С4Н10 возможны две структуры: Один из этих изомеров (н-бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение).

С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.

В ряду радикалов мы также встречаемся с явлением изомерии (см. табл. 1). Причем число изомеров у радикалов значительно больше, чем у соответствующих им алканов. Например, пропан, как известно, изомеров не имеет, а радикал пропил имеет два изомера: н-пропил и изо-пропил:

                       | СН3—СН3—СН2—      и     Н3С—СН—СН3

Химические свойства

Тривиальное (историческое) название алканов - "парафины" - означает "не имеющие сродства". Алканы химически малоактивны. Низкая реакционная способность алканов обусловлена очень малой полярностью связей С-С и С-Н в их молекулах вследствие почти одинаковой электроотрицательности атомов углерода и водорода. Предельные углеводороды в обычных условиях не взаимодействуют ни с концентрированными кислотами, ни со щелочами, ни даже с таким активным реагентом как перманганат калия.

Для них свойственны реакции замещения водородных атомов и расщепления.

В этих реакциях происходит гомолитическое расщепление кoвалентных связей, т. е. они осуществляются по свободно-радикальному (цепному) механизму. Реакции вследствие прочности связей C–C и C–H протекают или при нагревании, или на свету, или с применением катализаторов. Рассмотрим некоторые примеры реакций этого типа.

  1. Галогенирование. Это одна из характерных реакций предельных углеводородов. Наибольшее практическое значение имеют бромирование и хлорирование алканов.

  2. Нитрование. Несмотря на то, что в обычных условиях алканы не взаимодействуют с концентрированной азотной кислотой, при нагревании их до 140°С с разбавленной (10%-ной) азотной кислотой под давлением осуществляется реакция нитрования – замещение атома водорода нитрогруппой (реакция М.И.Коновалова). В подобную реакцию жидкофазного нитрования вступают все алканы, однако скорость реакции и выходы нитросоединений низкие. Наилучшие результаты наблюдаются с алканами, содержащими третичные углеродные атомы.

  3. Крекинг. При высокой температуре в присутствии катализаторов предельные углеводороды подвергаются расщеплению, которое называется крекингом. При крекинге происходит гомолитический разрыв углерод-углеродных связей с образованием насыщенных и ненасыщенных углеводородов с более короткими цепями.

 CH3–CH2–CH2–CH3(бутан) ––400°C> CH3–CH3(этан) + CH2=CH2(этилен)   Повышение температуры процесса ведет к более глубоким распадам углеводородов и, в частности, к дегидрированию, т.е. к отщеплению водорода. Так, метан при 1500ºС приводит к ацетилену.   2CH4  ––1500°C>  H–C=C–H(ацетилен) + 3H2 

  1. Изомеризация. Под влиянием катализаторов при нагревании углеводороды нормального строения подвергаются изомеризации - перестройке углеродного скелета с образованием алканов разветвленного строения.  

    CH3–CH2–CH2–CH2–CH3(пентан)  ––t°,AlCl3>  CH3

    CH–CH2–CH3(2- метилбутан)  I CH3

  2. Окисление. В обычных условиях алканы устойчивы к действию кислорода и окислителей. При поджигании на воздухе алканы горят, превращаясь в двуокись углерода и воду и выделяя большое количество тепла.

  3.   CH4 + 2O2  ––пламя>  CO2 + 2H2O  C5H12 + 8O2  ––пламя>  5CO2 + 6H2

Билет№11.

№1. Неметаллы. Положение в периодический таблице. Особенности строения атомов неметаллов, химические свойства, аллотропия.

Простые вещества — неметаллы образуют элементы главных подгрупп, расположенные в правой верхней части периодической системы (правее диагонали, соединяющей бор и астат).

Для их атомов характерно наличие на внешнем уровне 4-8 электронов. Так, у азота на внешнем уровне 5 электронов (соответствует номеру группы), у кислорода — 6, у хлора — 7 электронов.

Электроны в атомах этих элементов прочнее связаны с ядром, поэтому для неметаллов характерны такие физические свойства, как

  • отсутствие электрической проводимости (исключение — графит),

  • низкая, по сравнению с металлами, теплопроводность,

  • хрупкость.

Химические свойства

В реакциях с металлами и водородом неметаллы являются окислителями.

1.      Например, порошок серы при нагревании реагирует с железными опилками с образованием сульфида железа:

Fe0 + S0 = Fe+2S2

2.      При высокой температуре сера реагирует с водородом (например, если пропускать водород через расплавленную серу). Образуется газ с запахом тухлых яиц — сероводород:

H20 + S0 = H2+1S2

В реакциях с кислородом неметаллы являются восстановителями:

3.            S0 + O20 = S+4O22 (при горении серы образуется оксид серы (IV), или серни́стый газ)

C0 + O20 = C+4O2(графит сгорает с образованием оксида углерода (IV), или углекислого газа)

Галогены не соединяются с кислородом напрямую, но можно получить их оксиды, в которых они проявляют положительную степень окисления, например, оксид хлора (VII) Cl2O7.

Фторид кислорода O+2F21 — соединение, в котором кислород проявляет положительную степень окисления

Аллотропия- способность атомов, одного химического элемента, образовывать несколько простых веществ, а эти простые вещества-аллотропными видоизменениями, или модификациями.

№2. Предельные одноатомные спирты. Гомологический ряд, изомерия, номенклатура, химические свойства.

Спирты (или алканолы) — органические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп –ОН), соединенных с углеводородным радикалом.