
- •Часть 2
- •Часть 2
- •Тема 1. Сетевые модели и методы
- •Сетевая модель и ее основные элементы
- •Допустим, перед фирмой стоит задача реконструкции помещения. Перечень работ представлен в табл. 1.1. Сетевой график представлен на рис. 1.
- •Правила построения сетевых графиков
- •Понятие пути
- •Построение графика Ганта
- •Расчет временных параметров событий
- •Поздний срок свершения завершающего события
- •Расчет временных параметров работ
- •Сетевое планирование в условиях неопределённости
- •Тема 2. Элементы теории массового обслуживания
- •Классификация систем массового обслуживания
- •Расчёт показателей качества функционирования систем массового обслуживания
- •(Замкнутая система массового обслуживания)
- •Тема 3. Модель межотраслевого баланса
- •Характеристика основных разделов и схема межотраслевого баланса
- •Основные балансовые соотношения
- •Экономико-математическая модель межотраслевого баланса. Модель Леонтьева
- •Методы отыскания вектора валовых выпусков
- •Отыскание вектора конечной продукции
- •Смешанная задача межотраслевого баланса
- •Коэффициенты полных материальных затрат
- •Коэффициенты косвенных затрат
- •Тема 4. Модели линейного программирования
- •Примеры задач линейного программирования
- •Фирма выпускает четыре вида персональных компьютеров
- •Выражения (4.1), (4.2) и (4.3) составляют экономико-математическую модель задачи линейного программирования.
- •2. Задача оптимального использования ресурсов
- •Условия неотрицательности получаемого решения
- •Условие неотрицательности решения
- •4. Задача составления оптимальной смеси (задача диеты)
- •Условие неотрицательности решения
- •Условие неотрицательности решения
- •Геометрическая интерпретация задачи линейного программирования
- •Решение задач линейного программирования симплекс-методом
- •Тема 5. Транспортная задача
- •Нахождение первоначального опорного плана
- •Циклы пересчёта
- •Открытая транспортная задача
- •Определение оптимального плана транспортных задач, имеющих дополнительные условия
- •Распределительный метод решения транспортной задачи
- •Метод потенциалов
- •Тема 6. Модели управления запасами
- •Матричные игры
- •Игра с седловой точкой
- •Решение игры в смешанных стратегиях
- •Игра два на два (2 х 2)
- •Геометрическое решение игры
- •Игры 2 х n и m х 2
- •Тема 8. Элементы теории статистических игр. Игры с «природой»
- •Критерии выбора стратегии
- •Заключение
- •Библиографический Список
- •Оглавление
- •Часть 2
- •394026 Воронеж, Московский просп., 14
Матричные игры
Пусть игрок А имеет m чистых стратегий А1, А2, … Аi,…Аm, а игрок В имеет n чистых стратегий B1, B2, … Bj,…Bn. Такая игра называется игрой m n. Если игрок А пользуется стратегией Аi, а игрок В пользуется стратегией Вj, то обозначим через аij выигрыш игрока А, если аij > 0, или проигрыш игрока А, если аij < 0. Очевидно, что – это одновременно проигрыш игрока В, если аij > 0, и выигрыш игрока В, если аij < 0.
Тогда мы можем привести игру к матричной форме, т.е. составить матрицу, которая называется платежной матрицей, или матрицей игры:
|
В1 |
В2 |
… |
Вj |
… |
Вn |
|
А1 |
а11 |
а12 |
… |
а 1j |
… |
а 1n |
|
… |
… |
… |
… |
… |
… |
… |
(7.1) |
Аi |
аi1 |
а i2… |
… |
а ij |
… |
а in |
|
… |
… |
… |
… |
… |
… |
… |
|
Аm |
аm1 |
а m2 |
… |
а mj |
… |
а mn |
|
Каждая строка этой матрицы соответствует некоторой стратегии игрока А, а каждый столбец – некоторой стратегии игрока В.
Пример игры. Два игрока выкидывают на пальцах числа, причем четное число пальцев – это выигрыш игрока А, нечетное – проигрыш игрока А. Для простоты введем ограничение – игроки выкидывают от 1 до 3 пальцев.
Составим платежную таблицу:
|
В1 |
В2 |
В3 |
|
А1 |
2 |
-3 |
4 |
|
А2 |
-3 |
4 |
-5 |
-5 |
А |
4 |
-5 |
6 |
-5 |
|
4 |
4 |
6 |
|
|
Проанализируем матрицу игры: для каждой чистой стратегии игрока А определим минимальный выигрыш, т.е. определим
i = аij.
В нашем примере 1 = -3; 2 = -5; 3 = -5. Далее, среди полученных значений i-х определим максимальное
= i = аij.
В нашем примере = -3, т.е. игрок А проигрывает 3 очка. Это число называется нижней ценой игры, а соответствующая ему стратегия называется максиминной. В нашем примере стратегия А1 максиминная, т.е. из всех наихудших ситуаций выбирают наилучшую. Эта величина () – гарантированный «выигрыш» игрока А, какую бы стратегию ни выбрал игрок В. Меньше нижней цены игры игрок А никогда не «выиграет», если будет придерживаться правил игры.
Игрок В старается максимально уменьшить свой проигрыш. Для этого определяется верхняя цена игры
= j = аij.
Соответствующая стратегия называется минимаксной. В нашем примере будет две минимаксных стратегии В1 и В2. При этом игрок В проигрывает 4 очка.
Теорема 1. В любой матричной игре справедливо неравенство , т.е. нижняя цена игры никогда не превосходит верхнюю.