Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Лаб.docx
Скачиваний:
0
Добавлен:
03.01.2020
Размер:
644.53 Кб
Скачать

Міністерство освіти і науки, молоді та спорту України

Національний університет «Львівська політехніка»

Інститут комп’ютерних наук та інформаційних технологій

Кафедра автоматизованих систем управління

Лабораторна роботи1

на тему:

«Встановлення закономірностей в натуральному ряді»

Львів 2013

Лабораторна робота №1

Тема роботи: Встановлення закономірностей в натуральному ряді

Мета роботи: Навчитись знаходити і аналітично відображати закономірності

розміщення підмножин натурального ряду.

Короткі теоретичні відомості

Додатні числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ..., що з’явилися в результаті рахунку називаються натуральними і утворюють натуральний ряд чисел. Для запису натуральних чисел користуються десятковою системою числення, в основі якої лежать десять знаків - цифр. На першому місці в натуральному ряді стоїть число 1, за ним іде число 2, далі 3 і так до 9. Після 9, згідно з правилом десяткового числення, йде число 10, а за 10 іде 11, і у натуральному ряді немає останнього числа - за кожним натуральним числом стоїть ще одне натуральне число, за яким - ще одне і т.д.

Натуральних чисел нескінченно багато. Найбільше натуральне число назвати в принципі неможливо, оскільки нескінченність ряду таких чисел розуміє обов'язкову наявність числа, більшого будь-якого названого на 1. За цих умов правий край ряду натуральних чисел прийнято позначати символом нескінченності (значок ∞).

Крім того, всяке натуральне число відноситься або до класу простих чисел, або до класу складених чисел; відповідно, ряд натуральних чисел складається з простих і складених чисел. Просте число ділиться без залишку тільки на себе і на 1, тому має лише два позитивних дільники. Натуральне число, яке ділиться без залишку ще на якесь натуральне число, крім самого себе і 1 називається складеним.

Додатково по натуральних числах можна сказати наступне.

Одиниця умовно вважається простим числом, хоча вона не є ні простим, ні складеним числом, адже одиниця має лише один позитивний дільник. Виходить так, що одиниця відповідає критерію простих чисел, бо ділиться на саму себе і на 1, хоча дільник насправді виходить один і той же. 

Двійка - той поодинокий випадок, коли в клас простих чисел потрапило парне число. Взагалі ж серед простих чисел більше немає жодного парного числа, оскільки інші парні числа більше 2 діляться як мінімум на 2.

Простих чисел у ряді натуральних чисел теж нескінченна множина в тому сенсі, що прості числа продовжують з'являтися на всьому проміжку ряду натуральних чисел, а не перериваються в якійсь точці ряду. 

Прості числа (ті натуральні числа, які мають тільки два натуральних дільники: одиницю й саме себе) зовсім не такі прості, як може здатися на перший погляд. Скоріше навпаки: серед різних чисел вони приховують, напевно, найбільшу кількість загадок, над якими от уже багато сторіч б’ються кращі математики.

Два, три, п’ять, сім, одинадцять, тринадцять, сімнадцять... — щороку математики знаходять усе більші й більші прості числа. Якщо за часів Ейлера таким було 2147483647, то сьогоднішній рекордсмен — 2 у ступені 43112609 мінус 1 — у десятковому записі має 12978189 розрядів! Але математиків набагато більше за конкретні прості числа цікавлять пов’язані з ними закономірності: скільки їх, яка логіка їхньої появи серед натуральних чисел тощо. І якщо нескінченність кількості простих чисел зумів довести ще Евклід, то друге питання математики не можуть розв’язати досі.

Світло на нього кинуло випадкове відкриття польсько-американського математика Станіслава Улама (до речі, наш співвітчизник — він народився в польському тоді Львові). Якось 1963 року, сидячи на нудній доповіді, учений почав за спіраллю заповнювати числами клітинки листка у зошиті, при цьому машинально відзначав серед них прості. Виявилося, що прості числа розташовуються не хаотично, а утворюють орнаменти з діагональних ліній.

Сучасні комп’ютери будують такі «вишиванки» (математики не дуже шанобливо називають їх «скатертинами Улама») для десятків мільйонів чисел, і знайдена закономірність підтверджується. Однак підвести під цю «красу» міцний теоретичний фундамент поки не вдалося.

Прості числа зовсім не такі прості, як може здатися на перший погляд. Скоріше навпаки: серед різних чисел вони приховують, напевно, найбільшу кількість загадок, над якими от уже багато сторіч б’ються кращі математики.

Просте число — це натуральне число, яке має рівно два натуральних дільники (лише 1 і саме число). Решту чисел, окрім одиниці, називають складеними. Таким чином, всі натуральні числа понад одиницю розбивають на прості і складені. Теорія чисел вивчає властивості простих чисел. В теорії кілець простим числам відповідають незвідні елементи.

Натуральних чисел нескінченно багато. Найбільше натуральне число назвати в принципі неможливо, оскільки нескінченність ряду таких чисел розуміє обов'язкову наявність числа, більшого будь-якого названого на 1. За цих умов правий край ряду натуральних чисел прийнято позначати символом нескінченності (значок ∞).

Крім того, всяке натуральне число відноситься або до класу простих чисел, або до класу складених чисел; відповідно, ряд натуральних чисел складається з простих і складених чисел. Просте число ділиться без залишку тільки на себе і на 1, тому має лише два позитивних дільники. Натуральне число, яке ділиться без залишку ще на якесь натуральне число, крім самого себе і 1 називається складеним.

Одиниця умовно вважається простим числом, хоча вона не є ні простим, ні складеним числом, адже одиниця має лише один позитивний дільник. Виходить так, що одиниця відповідає критерію простих чисел, бо ділиться на саму себе і на 1, хоча дільник насправді виходить один і той же. 

Двійка - той поодинокий випадок, коли в клас простих чисел потрапило парне число. Взагалі ж серед простих чисел більше немає жодного парного числа, оскільки інші парні числа більше 2 діляться як мінімум на 2.

Простих чисел у ряді натуральних чисел теж нескінченна множина в тому сенсі, що прості числа продовжують з'являтися на всьому проміжку ряду натуральних чисел, а не перериваються в якійсь точці ряду. 

Прості числа (ті натуральні числа, які мають тільки два натуральних дільники: одиницю й саме себе) зовсім не такі прості, як може здатися на перший погляд. Скоріше навпаки: серед різних чисел вони приховують, напевно, найбільшу кількість загадок, над якими от уже багато сторіч б’ються кращі математики.

Два, три, п’ять, сім, одинадцять, тринадцять, сімнадцять... — щороку математики знаходять усе більші й більші прості числа. Якщо за часів Ейлера таким було 2147483647, то сьогоднішній рекордсмен — 2 у ступені 43112609 мінус 1 — у десятковому записі має 12978189 розрядів! Але математиків набагато більше за конкретні прості числа цікавлять пов’язані з ними закономірності: скільки їх, яка логіка їхньої появи серед натуральних чисел тощо. І якщо нескінченність кількості простих чисел зумів довести ще Евклід, то друге питання математики не можуть розв’язати досі.

Приклад №1

Хід роботи:

Знайти аналітичні вирази двох головних піддіагоналей і двох бічних піддіагоналей числової спіралі з центром 62.

f2(x) f1(x)

126

125

124

123

122

121

120

119

118

127

98

97

96

95

94

93

92

117

128

99

78

77

76

75

74

91

116

129

100

79

66

65

64

73

90

115

130

101

80

67

62

63

72

89

114

131

102

81

68

69

70

71

88

113

132

103

82

83

84

85

86

87

112

133

104

105

106

107

108

109

110

111

134

135

136

137

138

139

140

141

142

f3(x) f4(x)

Спосіб 1:

Розташувавши числа по спіралі, можна знайти закономірності їх появи на піддіагоналях f1(x), f2(x), f3(x) та f4(x), які можна описати за такими формулами:

f1(x)= ;

f2(x)= ;

f3(x)= ;

f4(x)= ;

де ; n [0; )номер квадрату (номер числа на будь-якій піддіагоналі).

Підставимо в ці формули :

1) f1(n)= ;

2) f2(n)= ;

3) f3(n)= ;

4) f4(n)= ;

Між знайденими вище формулами можна знайти ще одну закономірність, і представити її у вигляді такої загальної формули:

fk(n)= ; де k [1;4]номер піддіагоналі;

Перевіримо, знайдемо 3-те число у кожній з піддіагоналей:

k=1:

k=2:

k=3:

k=4:

Спосіб 2:

62 64 74 92 118

2 10 18 26

8 8 8

Будемо розглядати квадратний многочлен: , де x [1; ).

Для нашого прикладу:

Обчислюємо першу різницю:

R1=(4A+2B+C)-(A+B+C) = 3A+B

R2=(9A+3B+C)-(4A+2B+C) = 5A+B

Обчислюємо другу різницю:

d=(5A+B)-(3A+B)=2A=8

A=8/2=4.

B+C=62-4=58

2B+C=64-4*4=48

B=-10;

C=68.

Аналогічні обчислення робимо і для інших піддіагоналей.

Отже, отримуємо:

1. f1(x)=

2. f2(x)=

3. f3(x)=

4. f4(x)=

Для перевірки знайдемо п’яте число у кожній з піддіагоналей:

1.

2.

3.

4.

Приклад №2