- •2. Физические основы функционирования гидросистем
- •1. Силы, действующие в жидкости. Давление
- •2. Основные свойства жидкостей
- •3. Основы гидростатики
- •4. Расход
- •5 Уравнение Бернулли для потока идеальной жидкости
- •6. Уравнение Бернулли для потока реальной жидкости
- •7. Режимы течения жидкости
- •8. Потери энергии в гидросистемах
- •9. Течение жидкости в коротких каналах с дросселированием потока*
- •10. Кавитация
- •11. Гидроудар
10. Кавитация
Кавитацией называется образование в капельной жидкости полостей, заполненных паром, газом, или их смесью (так называемых кавитационных пузырьков или каверн). Кавитационные пузырьки образуются в тех местах, где давление в жидкости становится ниже некоторого критического значения ркр (в реальной жидкости ркр приблизительно равно давлению насыщенного пара этой жидкости при данной температуре). Если понижение давления происходит вследствие больших местных скоростей в потоке движущейся капельной жидкости, то кавитация называется гидродинамической, а если вследствие прохождения звуковых волн большой интенсивности — акустической.
Гидродинамическая кавитация обычно возникает в результате местного понижения давления, вызванного возникновением больших местных скоростей в потоке. Мельчайшие пузырьки газа или пара, двигаясь с потоком и попадая в область давления р < ркр, сильно расширяются в результате того, что давление содержащегося в них пара и газа оказывается больше, чем суммарное действие поверхностного натяжения и давления в жидкости. В результате на участке потока с пониженным давлением, например в трубе с местным сужением, создается довольно четко ограниченная кавитационная зона, заполненная движущимися пузырьками.
Выделившиеся из жидкости пузырьки пара и газа увлекаются потоком и переносятся в область более высокого давления, в которой пузырьки паров жидкости конденсируются и переходят в жидкое состояние, а воздушные сжимаются или полностью смыкаются. Так как сокращение кавитационного пузырька происходит мгновенно, частицы жидкости перемещаются к его центру с большой скоростью. В результате кинетическая энергия соударяющихся частиц вызывает в момент смыкания пузырьков местные гидравлические микроудары, сопровождающиеся высокими забросами давления и температуры в центрах пузырьков. По расчетам температуры могут достигать значений 1 500 °С и выше, а местное давление — до 200 МПа.
Большая энергия, рассеиваемая при охлопывании кавитационных пузырей вблизи поверхности обтекаемого тела, может приводить к ее повреждению. Масштабы такого явления, называемого гидравлической эрозией, могут быть разными — от точечной поверхностной эрозии после многих лет эксплуатации до катастрофического выхода из строя насосов, гидроаппаратов и т.п.
Кавитация может существенно увеличивать гидродинамическое сопротивление, в результате чего снижается коэффициент полезного действия гидравлического оборудования, может стать причиной снижения подачи насоса и даже срыва его работы.
Для избежания опасности возникновения кавитации в гидросистемах, рекомендуется соблюдать, как минимум, следующие условия:
давление в потоке жидкости должно быть больше давления насыщенных паров;
режим течения жидкости по возможности должен быть ламинарным;
температура рабочей жидкости не должна превышать значение, при котором может начаться образование газовых пузырьков;
максимально возможное ограничение попадания воздуха в рабочую жидкость.
Наиболее эффективным способом предотвращения возникновения кавитации в гидросистемах является повышение рабочего давления в проблемных зонах. В частности, радикальным способом борьбы с кавитацией в насосах является применение насосов подкачки.
Для уменьшения разрушающего эффекта кавитации используют противоэрозионные материалы, специальные покрытия из бронзы, хрома и др.
Наиболее стойкими к гидравлической эрозии являются титан, бронза и нержавеющая сталь, а наименее стойкими — чугун и углеродистая сталь.
Полностью устранить разрушительное действие кавитации путем применения стойких против коррозии материалов не представляется возможным.
