
- •Лекции по электричеству и магнетизму.
- •Часть III. Электродинамика
- •Глава 1. Электростатика
- •§1. Электрический заряд. Закон сохраненияэлектрического заряда. Закон кулона.
- •§2. Электрическое поле. Напряжённость поля. Вектор электрического смещения.
- •§3. Суперпозиция полей.
- •§4. Линии напряжённости.
- •§5. Поток напряженности.
- •§6. Теорема Гаусса.
- •§7. Применения теоремы гаусса к расчёту некоторых электростатических полей.
- •1. Поле бесконечной, равномерно заряженной плоскости.
- •2. Поле двух разноименно заряженных плоскостей.
- •3. Поле бесконечного заряженного цилиндра.
- •4. Поле заряженной сферической поверхности.
- •5. Поле объемно-заряженного шара.
- •§8. Работа сил электростатического поля при перемещении заряда. Циркуляция напряжённости электрического поля.
- •§9. Потенциал и разность потенциалов электростатического поля.
- •§10. Связь между напряжённостью и потенциалом.
- •§11. Эквипотенциальные поверхности.
- •§12. Диполь. Поле диполя.
- •§12. Электрическое поле в диэлектриках
- •§13. Вектор поляризации.
- •§ 14. Пьезоэлектрики.
- •§15. Сегнетоэлектрики.
- •§16. Электроёмкость уединённого проводника.
- •§17. Взаимная электроемкость. Конденсаторы.
- •§18. Соединения конденсаторов.
- •§19. Энергия заряженного конденсатора и уединённого проводника. Энергия электрического поля.
- •Глава 2. Электрический ток.
- •§20. Электрический ток. Сила и плотность тока.
- •§21. Сторонние силы. Эдс и напряжение.
- •§22. Сопротивление проводников. Закон Ома для однородного участка цепи и для полной цепи.
- •§23. Параллельное и последовательное соединение проводников.
- •§24. Температурная зависимость сопротивления проводников и полупроводников.
- •§25. Работа и мощность тока. Закон Джоуля – Ленца. Кпд.
- •§26. Правила Кирхгофа.
- •§27. Классическая теория электропроводности.
- •§28. Работа выхода. Контактные явления.
- •§29. Электрический ток в Электролитах.
- •§30. Электрический ток в газах. Несамостоятельный разряд. Самостоятельный газовый разряд. Виды разрядов.
- •Глава 3. Магнетизм.
- •§31. Магнитное поле.
- •§32. Вектор магнитной индукции.
- •§ 33. Закон Био-Савара-Лапласа.
- •§34. Закон Ампера.
- •§35. Сила лоренца.
- •§36. Эффект Холла.
- •§37. Элементарные носители магнетизма.
- •§ 38. Намагниченность.
- •§ 39. Виды магнетиков.
- •§40. Циркуляция вектора магнитной индукции.
- •§41. Магнитный поток. Теорема Гаусса для вектора магнитной индукции.
- •§42. Работа по перемещению проводника с током в магнитном поле.
- •§43. Электромагнитная индукция. Закон Фарадея. Правило Ленца.
- •§ 44. Токи Фуко.
- •§ 45. Вращение рамки в магнитном поле.
- •§ 46. Индуктивность контура. Самоиндукция.
- •§ 47. Взаимная индукция. Трансформаторы.
- •§48. Энергия магнитного поля.
- •§49. Электромагнитная теория Максвелла.
§21. Сторонние силы. Эдс и напряжение.
Возьмём два проводника, заряженные разноимёнными зарядами, и соединим их другим проводником. Тогда в этом проводнике за счёт разности потенциалов на его концах возникает электрическое поле (поле кулоновских сил), под действием которого свободные заряды (носители тока) приходят в упорядоченное движение от положительного потенциала к отрицательному (имеется в виду движение положительных зарядов, поскольку за направление тока принимается движение именно этих зарядов), т.е. возникает электрический ток. Однако этот ток очень быстро прекращается в силу того, что протекание тока приводит к выравниванию потенциалов на концах проводника и к исчезновению внутри него электрического поля. Т.о. если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей от точек с большим потенциалом к точкам с меньшим потенциалом. Это приводит к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока.
Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними. Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п.
Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.
Сторонние силы
совершают работу по перемещению
электрических зарядов. Физическая
величина, определяемая работой
,
совершаемой сторонними силами при
перемещении единичного положительного
заряда
,
называется электродвижущей силой (ЭДС),
действующей в цепи:
(21.1)
Единица измерения
ЭДС в системе СИ является Вольт (
)
Сторонняя сила
,
действующая на заряд
,
может быть выражена как
,
(21.2)
где
—
напряженность поля сторонних сил.
Работа сторонних сил по перемещению заряда на замкнутом участке цепи
,
(21.3)
Разделив (21.3) на , получим выражение для ЭДС, действующей в цепи:
,
(21.4)
т.е. ЭДС, действующая
в замкнутой цепи, может быть определена
как циркуляция вектора напряженности
поля сторонних сил. ЭДС, действующая на
участке
,
равна
.
(21.5)
На заряд
помимо сторонних сил действуют также
силы электростатического поля
.
Таким образом, результирующая сила,
действующая в цепи на заряд
,
равна
.
(21.6)
Работа, совершаемая результирующей силой над зарядом на участке , равна
.
(21.7)
Выражение (21.7) можно представить в следующем виде
.
(21.8)
Для замкнутой цепи работа электростатических сил равна нулю, поэтому в данном случае
.
(21.9)
Напряжением
на участке
называется физическая величина,
определяемая работой, совершаемой
суммарным полем электростатических
(кулоновских) и сторонних сил при
перемещении единичного положительного
заряда на данном участке цепи. Т.о.,
согласно (21.8),
.
(21.8)
В СИ напряжение выражается в вольтах. Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует ЭДС, т. е. сторонние силы отсутствуют.